

SPEKTRA Schwingungstechnik und Akustik GmbH Dresden

Products & Services

Table of Contents

Compendium SPEKTRA

Calibration Systems CS18

- CS18 Applications
- CS18 Acceleration
- CS18 Shock
- CS18 Acoustics
- References, Options and Accessories

Vibration and Shock Exciters

- CV-01 Calibrator
- SE-09 HF High Frequency Calibration Exciter
- SE-10 Vibration Exciter
- SE-11 Vibration Exciter
- SE-13 Vibration Exciter
- SE-101 RES-HA Vibration Calibration Exciter for High Acceleration
- SE-201 PN-LMS Pneumatic Low Medium Shock Exciter
- DPE-02 (Add-on to SE-201 PN-LMS)
- SE-220 HOP-MS Calibration Exciter Medium-g-Shock
- SE-221 HOP-HS Calibration Exciter High-g-Shock
- SE-222 HOP-VHS Calibration Exciter Very-High-g-Shock
- Shock Box
- Power Amplifier
- APS Shaker Air Bearing
- APS Shaker Linear Bearing

Vibration Control Systems

- VCS 201
- VCS 400
- VCS 401
- List of References

Services

- DAkkS Calibration Laboratory
- Environmental Test Laboratory
- DAkkS Accreditation Certificate

Calibration Systems CS18

Calibration Systems CS18 for Sound and Vibration Measurement Engineering

The CS18 Calibration System is a system family with various versions that are optimized for a wide variety of measurements in sound and vibration engineering. Calibration of the magnitude of transfer coefficient is a common feature of all systems. The SRS-35 Measurement and Control System can integrate acceleration signals over time with high precision and so allows transducers sensitive to vibration velocity and displacement to be calibrated as well. Many optional extras are available by means of which the performance of every system can be upgraded still further.

Possible modes of calibration by CS18:

Vibration: Absolute and comparison calibration

Sound: Comparison calibration of sound pressure in a free sound field or a pressure chamber.

Electrical quantities: Comparison calibration of charge and voltage

The SRS-35 Measurement, Analysis and Control System by SPEKTRA is the common electronic platform of all CS18 systems. A dedicated software package provides a standardized user interface and is allocated to each system. Depending on the required configuration, their standard signal conditioners directly accept charge sensors, sensors with integrated impedance converters or two measuring microphones.

Explanations to the Calibration Systems

Modern **Calibration Systems** are conforming to ISO 16063 in vibration engineering and to IEC 61094, IEC 61672, IEC 61043, and IEC 60942 in acoustics.

Secondary Calibration is calibration by comparing the test object with a reference standard. The unknown transfer coefficient of the test object is traced back to the known transfer coefficient of the reference standard, in acoustics often by substitution.

Primary Calibration is absolute calibration. In vibration engineering, the excitation acceleration is traced back to the wavelength of Helium-Neon laser light by means of interferometric amplitude measurement.

The **Excitation Signal** in calibration can be vibration acceleration with a sinusoidal or shock-type waveform, depending on the goal of calibration, or sound pressure, configured as a plane wave in a free sound field or alternating pressure in a pressure chamber.

The **Result of Calibration** is the transfer coefficient or its level in dB and a statement of its range of uncertainty.

The **Frequency Range of Calibration** is determined by 0.05 Hz to 20 kHz in vibration engineering or 0.1 Hz to 20 kHz for the calibration in acoustics.

The **Performance** of a calibration system for vibration is mainly dependent on the vibration exciter and reference standard, as they determine the frequency range, maximum test object weight and measurement uncertainty. In acoustics, the inner dimensions of the anechoic chamber determine the lower limiting frequency of free-field calibration.

The **Measurement Uncertainty** of modern systems is specified according to GUM (ISO Guide to the Expression of Uncertainty in Measurement, 1995) with expansion factor k = 2. It is stated in the documentation specifically for each system as a function of frequency, weight of object under test (for vibration) and other relevant calibration parameters.

Systems for Comparison Calibration

CS18 VLF System for the comparison calibration of vibration sensors at very low frequencies 0.05 Hz to 160 Hz, e.g. seismic sensors with a weight of up to 23 kilogram and sensors of whole-body vibration

CS18 MF System for the calibration of vibration sensors in frequency range 3 Hz to 10 kHz; standard system for common vibration sensors

CS18 HF System for the comparison calibration of sensors in a working frequency range from 5 Hz to 20 kHz and for resonance search up to 50 kHz

Users: DAkkS calibration labs, quality management divisions in industry, sensor manufacturers

Calibration Systems CS18

Systems for Absolute Calibration

CS18P VLF, horizontal or vertical excitation, for the absolute calibration at very low frequencies in the range from 0.05 Hz to 160 Hz, e.g. seismic, shock and human vibration sensors

CS18P HF, System for the absolute method of vibration calibration

in frequency range 5 Hz to 20 kHz

Users: National offices of metrology, DAkkS calibration laboratories, quality management divisions in industry, sensor manufacturers

Systems for Shock Calibration

CS18 LMS, system with pneumatic shock exciter for calibrating sensors at shock acceleration up to 15,000 g_n. Efficient system for calibrating crash sensors.

CS18 MS, system for calibration of sensors with medium shock acceleration up to $40.000 g_n$. Efficient system for calibrating shock sensors

CS18 HS/VHS, system for calibration of sensors with (very) high shock acceleration up to 200.000 g_n. Efficient system for calibrating shock sensors

Users: Quality assurance in automotive industries

11- 2

Hard- and Software Options to increase the range of capacity in the calibration procedure

- ANA PR Signal conditioner for making direct connection to piezo-resistive sensors, including software for the determination of electrical quantities
- CAL-Q-U-ICP[®] Module and software for calibrating the magnitude of the transfer coefficient of charge and voltage amplifiers
- APS 0109 Zero Position Controller
- Data Base Database linkage, interface to database of sensors and measuring instruments
- MS-C Multi-Sine Calibration
- PHASE Phase-calibration of vibration sensors, with the option CAL-Q-U-ICP[®] also of signal conditioners

Systems for Sound Pressure Calibration

CS18 FF¹⁾, System for the freefield calibration of microphones and sound level meters in the frequency range 125 Hz to 20 kHz by the substitution

CS18 SPL, System for the pressure calibration of ½" and ¼" measuring microphones by the comparison method in the frequency range 31.5 Hz to 5 kHz

Users : DAkkS calibration laboratories, universities, acoustical research centers

¹⁾ The anechoic test chamber complies with ISO 3745 precision class 1. It is supplied as part of every CS18 FF. The dimensions of the chamber are about 2 m x 2 m x 2.5 m.

Examples of Combinations from Calibration Systems with Production Facilities

CS18 MF Calibration System in connection with a Thermostream; Calibration under different temperatures in the R&D field.

CS18 VLF in connection with a climatic chamber for use in the sensor development

- TEDS Calibration of sensors using their integrated electronic data sheet (according to IEEE 1541.4)
- MUB Drawing up and determination of the individual Measurement uncertainty budget when supplying a CS18 Calibration system
- CS18 ZK Accessories bag contains all the means for weighing, mounting, isolating sensors, connecting cables, cable clamps, cable adapters for making connection to an instrument, torque wrench and auxiliary utensils.
- Mobil Transportation trolley for CS18 MF and CS18 HF
- AIR Supply unit for air bearing shakers
- CLIMATE Hygrometer and thermometer for the laboratory
- SEMINAR with teaching and training

SPEKTRA does carry out annually Calibration Seminars for all users of calibration systems.

All data are subject to change without notice

November 2013

All data are subject to change without notice

CS18 VLF Calibration System Very-Low-Frequency

Application

- Secondary calibration according to ISO 16063-21 (comparison method) of charge type, ICP[®], voltage, capacitive and piezo-resistive sensors for acceleration, velocity and distance, with Sine excitation with high accuracy
- Secondary calibration of reference standards
- Resonant frequency search from 10 to 200 Hz
- Calibration of vibration meters
- Calibration of vibration calibrators
- Calibration of seismic sensors

Range of Use

- Certified calibration laboratories
- Departments for the **supervision of measuring instruments** in research and industries (automotive, aviation, space, military)
- Quality assurance in sensor production
- National metrology laboratories, with optional extra 'Primus' as a CS18P VLF primary calibration system)

- Traceable to Physikalisch Technische Bundes-anstalt (PTB) Braunschweig by the SPEKTRA Calibration Laboratory D-K-15183-01-00 (DAkkS Calibration Certificate)
- Calibration of sensors with / without amplifiers, measurement instruments with indication of their own by applying of determinate acceleration signals
- Calibration of calibrators by exact measurement of vibration quantities
- Frequency range 0.2 Hz ... 160 Hz, optional frequency range 0.1 Hz ... 160 Hz
- Sensor mass (DUT) up to 900 gram, at horizontal / vertical excitation, optional 3 kilogram
- Air-bearing **long stroke vibration exciter** with electrical zero-positioning-controller (vibration displacement 100 mm)
- **Repeatability** under identical conditions less to 63 Hz < 0.1 %, otherwise less than 0.5 %
- Upgradeable to a combined Sine calibration system, e.g. type CS18 VLF / HF, CS18P VLF

CS18 VLF Calibration System Very-Low-Frequency

Components

- Vibration control system SRS-35, SPEKTRA with electronic zero position controller APS 0109
- Software CS18 VLF with operation modes: sensor calibration, measurement, supply, sweep
- Power amplifier APS 125
- Air-bearing long-stroke vibration exciter APS 113-AB for up to 100 mm vibration displacement
- Electronic zero position control APS 0109
- Vertical Mounting Kit for vertical excitation
- Horizontal excitation on foundation (foundation not supplied)
- Reference standard accelerometer BN-07 or BN-13
- Single-ended reference standard for the calibration of calibrators
- Standard PC

Specification CS18 VLF with air bearing vibration exciter APS 113-AB in the frequency range 0.2 Hz ... 160 Hz for sensor mass up to 900 gram (DUT)

for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

Frequency Range		Sensor Mass DUT	Expanded Measurement	Working Range (peak value)			
from	to	horizontal / vertical	Uncertainty ²⁾ Amount ³⁾ / Phase ¹⁾	Minimum	Maximum ⁴⁾ (Displacement, Velocity, Acceleration)	Maximum ⁵⁾ (Displacement, Velocity, Acceleration)	
0.2 Hz	< 0.4 Hz		1.5 % / 1.5°		0.2 Hz 1.25 Hz: 50 mm	0.2 Hz 1.25 Hz: 50 mm	
0.4 Hz	< 1 Hz		1.0 % / 1.5°				
1 Hz	63 Hz		0.5 % / 0.7°	0.2112 1.0112. 0.04 m/s ²	0.4 m/s	0.4 m/s	
> 63 Hz	160 Hz	900 gram	1.0 % / 1.0°	1.0 Hz 160 Hz:	8 Hz 63 Hz:	8 Hz 63 Hz:	
Reference- Frequency 8 Hz, 16 Hz			0.5 % / 0.7°	0.1 m/s²	10 m/s² 63 Hz 160 Hz: 5 m/s²	20 m/s² 63 Hz 160 Hz: 10 m/s²	

¹⁾ Only in combination with optional extra PHASE

²⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor) for the best possible DUT (other devices that are not as ideal have to be evaluated with individual additions)

³⁾ Values only valid for electrical sensor signals \geq (1 mV or 1 pC)

⁴⁾ Maximum acceleration for maximum payload (DUT); higher excitations possible according to datasheet APS 113-AB

⁵⁾ Maximum acceleration without any payload (DUT); higher excitations possible according to datasheet APS 113-AB

Options for calibration systems CS18 VLF:

- -EF Extended frequency range from 0.1 Hz
- -HL High Masses horizontally up to 5 kg and vertically up to 3 kg with the additional vibration exciter APS 129; e.g. for calibration of seismometers and geophones

-TABLE granite plate on block of sandstone to mount and use the system properly

Application

- Secondary calibration according to **ISO 16063-21** (comparison method) of charge type, IEPE, voltage, capacitive and piezo-resistive sensors for acceleration, velocity and displacement, with Sine excitation with high accuracy
- Secondary calibration of reference standards
- Resonant frequency search up to 20 kHz
- Calibration of vibration meters
- Calibration of vibration calibrators

Range of Use

- Certified calibration laboratories
- Departments for the supervision of measuring instruments (automotive, aviation, space, military)
- Quality assurance in sensor production

- Traceable to Physikalisch Technische Bundesanstalt (PTB) Braunschweig by the accredited SPEKTRA Calibration Laboratory D-K-15183-01-00 (DAkkS Calibration Certificate)
- Calibration of sensors with / without amplifiers, measurement instruments with indication of their own by applying of determinate acceleration signals
- Calibration of calibrators by exact measurement of vibration quantities
- Frequency range 3 Hz ... 10 kHz
- Sensor mass up to 500 gram
- **Repeatability** under identical conditions up to 5 kHz < 0.2 %, otherwise less than 0.5 %
- **Upgradeable** to a combined Sine calibration system, e.g. type CS18 VLF / MF
- Continuous frequency sweep for consistency check of vibration sensors
- **Including single-ended reference standard** for the calibration of vibration calibrators

CS18 MF Calibration System Medium-Frequency

Components

- Vibration control system SRS-35, SPEKTRA
- Software CS18 MF with operation modes: sensor calibration, measurement, supply, sweep
- Power amplifier PA 14-180, SPEKTRA
- Vibration exciter SE-10
- Internal reference standard accelerometer BN-09
- Single-ended reference standard for the calibration of calibrators
- Standard-PC

Specification

CS18 MF with vibration exciter SE-10

in the frequency range 3 Hz ... 10 kHz for sensors with mass to max. 500 gram (DUT) for environmental conditions: temperature 23° C / 73° F (± 2° C) and relative humidity 30 % ... 75 %

Frequency Range		Sensor Mass DUT	Expanded Measurement	Working Range (peak value)			
From	То	Up to	Uncertainty ²⁾ Amount ³⁾ / Phase ¹⁾	Minimum	Maximum ⁴⁾ (Displacement, Velocity, Acceleration)	Maximum ⁵⁾ (Displacement, Velocity, Acceleration)	
3 Hz	< 5 Hz		2.0 % / 2.0°		3 Hz 12.5 Hz: 5 mm	3 Hz12.5 Hz: 5 mm	
5 Hz	< 10 Hz	500 grom	1.5 % / 1.5°				
10 Hz	< 20 Hz	500 gram	1.0 % / 0.7°		12.5 HZ 48 HZ: 0.4 m/s	12.5 Hz 200 Hz: 0.4 m/s	
20 Hz	1,000 Hz		0.7 % / 0.7°		48 Hz 1 kHz:	200 Hz 10 kHz:	
> 1,000 Hz	5,000 Hz	250 gram	1.5 % / 1.5°	1.0 m/s-	120 m/s²	500 m/s²	
> 5,000 Hz	10,000 Hz	50 gram	2.5 % / 2.0°		1 kHz 5 kHz:		
Reference-Frequency 80 Hz, 100 Hz, 160 Hz		500 gram	0.5 % / 0.7°		5 kHz 10 kHz: 350 m/s ²		

¹⁾ Only in combination with optional extra PHASE

²⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement) with k = 2 (coverage factor)

³⁾ Valid for electrical sensor signals \geq (1 mV or 1 pC)

⁴⁾ Maximum acceleration for maximum payload (DUT)

⁵⁾ Maximum acceleration without any payload

Options for calibration systems: see leaflet CS18-extras

Optional: SE-10 with trunnion for angular operation

All data are subject to change without notice

October 2015

Application

- Secondary calibration according to ISO 16063-21 (comparison method) of charge type, ICP[®], voltage, capacitive and piezo-resistive sensors for acceleration, velocity and distance, with Sine excitation with high accuracy
- Secondary calibration of reference standards
- Resonant frequency search up to 50 kHz
- Calibration of vibration meters
- Calibration of vibration calibrators

Range of Use

- Certified calibration laboratories
- Departments of **measuring instrument verification** in research and industry (automotive, aviation, space, military)
- Quality assurance in sensor manufacturing
- National metrological laboratories (with the optional extra 'Primus' as a Primary Calibration System CS18P HF)

- Traceable to Physikalisch Technische Bundesanstalt (PTB) Braunschweig by the accredited SPEKTRA Calibration Laboratory D-K-15183-01-00 (DAkkS Calibration Certific.)
- Calibration of sensors with/without amplifiers, measurement instruments with own indication by applying defined acceleration signals
- Calibration of calibrators by exact measurement of vibration quantities with an additional accelerometer
- Frequency range 5 Hz ... 20 kHz
- Sensors with mass up to 200 gram
- Repeatability under identical conditions less than 0.1 % up to 5 kHz, otherwise less than 0.5 %
- Air-bearing high-frequency vibration exciter with internal reference standard accelerometer
- Max. acceleration without DUT: 20 gn
- Upgradeable to a combined Sine calibration system, e.g. type CS18 HF / VLF or CS18P HF
- **Including single-ended reference standard** for the calibration of vibration calibrators

CS18 HF Calibration System High-Frequency

Components

- Vibration control system SRS-35, SPEKTRA
- Software CS18 HF with operation modes: sensor calibration, measurement, supply
- Power amplifier PA 14-500
- Air-bearing high-frequency vibration exciter SE-09 with heavy base plate M
- Reference standard transducer BN-09, integrated in vibration exciter SE-09
- Single-ended reference standard for the calibration of calibrators
- Standard-PC

Specification

CS18 HF with vibration exciter SE-09

in the frequency range 5 Hz ... 20 kHz for sensor mass up to 200 gram $(DUT)^{1}$ for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

Frequency Range		Sensor Mass DUT	Expanded Measurement	Working Range (peak value)			
from	to	Up to	Uncertainty ²⁷ Amount ³⁾ / Phase ⁴⁾	Minimum	Maximum ⁵⁾ (Displacement, Velocity, Acceleration)	Maximum ⁶⁾ (Displacement, Velocity, Acceleration)	
5 Hz	< 10 Hz		1,0 % / 1,0°				
10 Hz	< 20 Hz	200 gram	0,7 % / 0,7°		5 Hz 12 Hz:	5 Hz12 Hz:	
20 Hz	1.000 Hz		0,5 % / 0,7°		4 mm	4 mm	
> 1.000 Hz	5.000 Hz		0,7 % / 0,7°				
> 5.000 Hz	10.000 Hz	E0 grom	1,5 % / 1,0°	1,0 m/s²	0,3 m/s	0,3 m/s	
> 10.000 Hz	15.000 Hz	50 gram	2,0 % / 2,0°				
> 15.000 Hz	20.000 Hz		3,0 % / 3,0°		53 Hz 20 kHz: 100 m/s ²	106 Hz 20 kHz: 200 m/s²	
Reference frequency 80 Hz, 100 Hz, 160 Hz		200 gram	0,5 % / 0,7°				

¹⁾ Specifications for CS18 HF with other vibration exciters on request

²⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor)

for the best possible DUT (other devices that are not as ideal have to be evaluated with individual additions)

³⁾ Valid for electrical sensor signals \geq (1 mV or 1 pC)

⁴⁾ Only in combination with optional extra PHASE

⁵⁾ Maximum acceleration for maximum payload (DUT); higher excitations possible according to datasheet SE-09

⁶⁾ Maximum acceleration without any payload; higher excitations possible according to datasheet SE-09

For the advanced technical data, please see data sheet for the SE-09 **Options for calibration systems:** see leaflet CS18-extras

Applications

- **Primary calibration** of vibration sensors, calibrators and measurement systems with very high quality and performance according to **ISO 16063-11** (Primary Calibration, method 3)
- **Primary calibration** of laser vibrometers and reference laser vibrometers performance to **ISO 16063-41**
- Primary calibration of reference standards
- Resonant frequency search from 10 to 200 Hz
- Calibration of vibration meters
- Calibration of vibration calibrators
- Calibration of **seismic sensors**

Range of Use

- National metrology laboratories as highest measurement authorities
- Authorized calibration laboratories (such as DAkkS-Labs in Germany)
- Departments for the **supervision of measuring** instruments in research and industries
- Quality assurance in sensor production

- Traceable to Physikalisch Technische Bundesanstalt (PTB) Braunschweig by the accredited SPEKTRA Calibration Laboratory D-K-15183-01-00 (DAkkS Calibration Certificate), NIST (MRA) ...
- Calibration of sensors with / without amplifiers, of measurement instruments with indication of their own by applying determinate acceleration signals
- Calibration of calibrators by exact measurement of definite vibration quantities
- Air-bearing long stroke exciter with electronic zero position control unit for full 100 mm peak to peak stroke application
- Frequency range 0.2 Hz ... 160 Hz, Option -EF: starting from 0.1 Hz
- Sensor mass up to 900 gram Option -HL: 5 kg horizontal / 3 kg vertical
- All **digital laser vibrometer** as primary reference standard
- Additionally applicable for secondary calibrations according to ISO 16063-21 by using integrated secondary reference standard
- **Upgradeable** to calibration systems, e.g. type CS18P VLF / HF

CS18P VLF Primary Calibration System Very-Low-Frequency

Components

- Precision measuring and control system SRS-35, SPEKTRA
- Software CS18P VLF with operation modes: sensor calibration, measurement, supply, sweep
- Electronic zero position controller **APS 0109**
- Power amplifier APS 125
- Air bearing long-stroke vibration exciter APS 113AB for up to 100 mm vibration displacement
- Vertical Mounting Kit for vertical excitation
- Digital laser vibrometer PLV-01 as primary reference standard
- Prism for the calibration of laser vibrometers
- Vibration isolation VI-02 for vibrometer PLV-02

Specifications of CS18P VLF (Primary System) at 23°C (\pm 2°C) and relative humidity 30 % ... 75 %

Frequency Range		Sensor Mass DUT	Expanded Measurement Uncertainty ²⁾		Working Range (peak value)		
from	to	horizontal / vertical up to	Amount ³⁾ / Phase ¹⁾ Sensors and Laser Vibrometers with analog Signal Output	Amount Reference Laser Vibrometer	Minimum	Maximum ⁴⁾ (Displacement, Velocity, Acceleration)	Maximum ⁵⁾ (Displacement, Velocity, Acceleration)
0.2 Hz	< 0.4 Hz		0.7 % / 0.7°			0.2 Hz 1.25 Hz: 50 mm	0.2 Hz 1.25 Hz: 50 mm
0.4 Hz	< 1 Hz		0.5 % / 0.5°		0.2 Hz 1.0 Hz:	1.25 Hz 8.0 Hz:	1.25 Hz 8.0 Hz:
1 Hz	63 Hz	900 gram	0.3 % / 0.5°	0.25 %	0.04 m/s²	0.4 m/s	0,4 m/s
> 63 Hz	160 Hz	Ĵ	0.7 % / 0.7°		1.0 Hz 160 Hz:	8 Hz 63 Hz: 20 m/s²	8 Hz 63 Hz: 20 m/s²
Ref. F 8 Hz	requency , 16 Hz		0.3 % / 0.5°		0.1 m/s²	63 Hz 160 Hz: 10 m/s²	63 Hz 160 Hz: 10 m/s²

Specifications of CS18P VLF (Secondary System)

0.2 Hz	< 0.4 Hz		1.5 % / 1.5°			0.2 Hz 1.25 Hz: 50 mm	0.2 Hz 1.25 Hz: 50 mm
0.4 Hz	< 1 Hz		1.0 % / 1.5°		0.2 Hz 1.0 Hz:	1.25 Hz 8.0 Hz:	1.25 Hz 8.0 Hz:
1 Hz	63 Hz	900 gram	0.5 % / 0.7°	-	0.04 m/s²	0.4 m/s	0.4 m/s
> 63 Hz	160 Hz		1.0 % / 1.0°		1.0 Hz 160 Hz:	8 Hz 63 Hz: 20 m/s²	8 Hz 63 Hz: 20 m/s²
Ref. Fi 8 Hz	requency , 16 Hz		0.5 % / 0.7°		0.1 m/s²	63 Hz 160 Hz: 10 m/s²	63 Hz 160 Hz: 10 m/s²

¹⁾ Only in combination with optional extra PHASE

²⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement) with k = 2 (coverage factor)

³⁾ Valid for electrical sensor signals \geq (1 mV or 1 pC)

⁴⁾ Maximum acceleration for maximum payload (DUT)

⁵⁾ Maximum acceleration without any payload (DUT)

Options for calibration systems

-EF extended frequency range starting from 0,1 Hz

-HL higher payloads up to 5 kg in horizontal and 3 kg in vertical direction

CS18P HF Primary Calibration System High-Frequency

Applications

- **Primary calibration** of vibration sensors, calibrators and meters with lowest measurement uncertainty according to **ISO 16063-11** (Primary calibration using method 3)
- Primary calibration of laser vibrometers and reference laser vibrometers according to ISO 16063-41
- Primary calibration of reference standard transducers
- Resonant frequency search up to 50 kHz

Range of Use

- National metrological laboratories as highest metrological authorities
- Certified calibration laboratories with outstanding quality demands
- Departments of measuring instrument verification in research and industry
- Quality assurance in sensor manufacturing

- Traceable to Physikalisch Technische Bundes-anstalt (PTB) Braunschweig by the accredited SPEKTRA Calibration Laboratory D-K-15183-01-00 (DAkkS Calibration Certificate), NIST (MRA) ...
- Calibration of sensors with / without measuring amplifier, measuring systems with indication of their own by applying of determinate acceleration signals
- Calibration of calibrators by measurement with ultra-high precision
- Frequency range 5 Hz ... 20 kHz (... 50 kHz)
- Sensors with mass up to 200 gram
- Digital laser vibrometer as primary reference standard
- Application of an air-bearing high-frequency vibration exciter with internal reference standard
- Maximum acceleration 40 g_n
- Additionally applicable for secondary calibrations according to ISO 16063-21 by using integrated secondary reference standard
- Upgradeable to combined calibration system CS18P VLF / HF

CS18P HF Primary Calibration System High-Frequency

Components

- Precision measuring and control system SRS-35, SPEKTRA
- Software CS18 HF with operation modes: sensor calibration, measurement, supply, sweep
- Power amplifier PA 14-500
- Air bearing vibration exciter SE-09 with base plate M
- All-digital Polytec laser vibrometer PLV-01 as primary reference standard
- Prism for the calibration of laser vibrometers
- Vibration isolator VI-01 for laser vibrometer PLV-02
- BN-09 as secondary reference standard, integrated in exciter SE-09
- Single-ended reference standard for the calibration of calibrators

Specifications of CS18P HF (Primary Calibration) at 23°C (± 2°C) and relative humidity 30 % ... 75 %

Frequency Range		Sensor Mass DUT	Expanded Measurement Uncertainty ²⁾		Working Range (peak value)		
from	to	horizontal / vertical up to	Amount ³⁾ / Phase ¹⁾ Sensors and Laser Vibrometers with analogue Signal Output	Display Deviation Ref. Laser Vibrometer	Mini- mum	Maximum ⁴⁾ (Displacement, Velocity, Acceleration)	Maximum ⁵⁾ (Displacement, Velocity, Acceleration)
5 Hz	< 20 Hz		0.5 % / 0.5°				
20 Hz	1,000 Hz	200 gram	0.3 % / 0.5°	0.2 %	0.1 m/o²	5 Hz 12 Hz: 4 mm	5 Hz 12 Hz: 4 mm
> 1,000 Hz	5,000 Hz		0.5 % / 0.5°				
> 5,000 Hz	10,000 Hz		1.0 % / 1.0°	0.3 %	0.111/5	12 Hz 53 Hz:	12 Hz 106 Hz:
> 10,000 Hz	15,000 Hz	50 gram	2.0 % / 2.0°	0.4 %		0.5 11/5	0.5 11/5
> 15,000 Hz	20,000 Hz		2.5 % / 3.0°	0.5 %		53 Hz 20 kHz:	106 Hz 20 kHz:
Reference F 80 Hz, 100 F	Frequency Hz, 160 Hz	200 gram	0.3 % / 0.5°	0.2 %	10 m/s²	100 m/s²	200 m/s-

Specifications of CS18P HF (Secondary Calibration)

5 Hz	< 10 Hz		1.0 % / 1.0°				
10 Hz	< 20 Hz	200 grom	0.7 % / 0.7°			5 Hz 12 Hz:	5 Hz12 Hz:
20 Hz	1,000 Hz	200 gram	0.5 % / 0.7°			4 mm	4 mm
> 1,000 Hz	5,000 Hz		0.7 % / 0.7°		1.0 m/s²		
> 5,000 Hz	10,000 Hz		1.5 % / 1.0°	-		0.3 m/s	0.3 m/s
> 10,000 Hz	15,000 Hz	50 gram	2.0 % / 2.0°				
> 15,000 Hz	20,000 Hz		3.0 % / 3.0°			53 Hz 20 kHz: 100 m/s²	106 Hz 20 kHz: 200 m/s²
Reference Frequency 80 Hz, 100 Hz, 160 Hz		200 gram	0.5 % / 0.7°		10 m/s²		

¹⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor) for the best possible DUT (other devices that are not as ideal have to be evaluated with individual additions)

²⁾ Only in combination with optional extra PHASE

³⁾ Valid for electrical sensor signals \geq (1 mV or 1 pC)

⁴⁾ Maximum acceleration for maximum payload (DUT); higher excitations possible according to datasheet SE-09

⁵⁾ Maximum acceleration without any payload; higher excitations possible according to datasheet SE-09

Options for calibration systems

-TABLE

block made of sand stone for proper installation and utilization of the system

Applications

- Secondary calibration of shock-sensors as well as complete measuring instruments in form of a measuring chain, with very high precision and efficiency, according to ISO 16063-22 (calibration by the comparison method)
- Secondary calibration of accelerometer standards

Range of Use

- Certified calibration laboratories
- Departments of **measuring instrument verification** in research and industry, particular in **automotive crash test laboratories**
- Quality assurance in sensor manufacturing

- Traceable to Physikalisch-Technische Bundes-anstalt (PTB) Braunschweig by the SPEKTRA Calibration Laboratory D-K-15183-01-00 (DAkkS Calibration Certificate)
- Application of a shock pendulum with integrated reference standard
- Maximum shock amplitude: 200 g_n
- Type of excitation: shock half sine
- Position of DUT: horizontal
- Maximum sensor mass: up to 300 gram
- Calibration of sensors with / without measuring amplifier and measuring systems (sensor and signal conditioner)
- Direct connection of piezo-resistive sensors through integrated PR signal conditioner
- Determination of **aptitude for calibration** (bridge resistance, offset, drift) of PR sensors in conjunction with software **PR measurement**
- Upgradeable to a combined calibration systems, e.g. type CS18 LF / LS

CS18 LS Calibration System Shock Pendulum

Components

- Vibration control system SRS-35 by SPEKTRA with integrated PR signal conditioner
- Shock pendulum SE-210 SP-LS with set of dampers for adjusting the pulse width
- Reference standard transducer BN-02
- Standard PC

Performance specification of CS18 LS with reference standard BN-02

for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

Shock Acceleration	10 <i>g</i> _n 200 <i>g</i> _n	
Pulse Width	1 ms 10 ms	
Sensor Mass (DUT)	max. 300 gram	
Expanded Upcortainty ¹⁾	10 g _n 150 g _n	< 1,0 %
Expanded oncertainty	> 150 g _n 200 g _n	< 1.5 %

¹⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor)

Specification of integrated PR module

Module for supplying power to piezo-resistive sensors or for supplying DC power to sensors (e.g. VC types)

Components of the integrated PR module

- Plug-in module to CS18 electronic unit SRS-35
- External connecting box for individual sensor adaptation
- Software for determining the electrical aptitude for calibration of PR sensors (measurement of bridge resistance, offset and offset drift, offset compensation, shunt calibration, insulations test)

Options for the PR module

- Individual external connection boxes
- TEDS for PR sensors

Technical specification PR module

Bridge Power Supply	4-lead or 6-lead configuration selectable, power will be measured and controlled
Voltage Range	-10 V 0 V +10 V
Current	maximum 100 mA
Bridge Completion	resistors for completing single-arm and two-arm partial bridges can be integrated in a connecting box (dimensioning according to specific sensor)
Shunt Resistors	2 units can be integrated in a connecting box, resistance values can be stored in an EEPROM
Amplifier	0 42 dB
Gain Steps (DC)	factors to be set by software: 1, 2, 4, 8, 16, 32, 64, 128
Offset	offset measurement and offset compensation can be performed

Options for calibration systems: see leaflet CS18-extras

All data are subject to change without notice

Applications

- Secondary calibration of shock transducers as well as complete measuring instruments (measuring chain) with very high precision and efficiency, according to ISO 16063-22 (calibration by the comparison method)
- Secondary calibration of shock accelerometer reference standards

Range of Use

- Accredited calibration laboratories
- Calibration laboratory departments of industrial firms particular in automotive, aviation or space travel industry
- Quality assurance in sensor manufacturing
- National metrology laboratories as highest measurement authorities (with upgrade to primary system)

- **Traceable** to **P**hysikalisch **T**echnische **B**undesanstalt (**PTB**) Braunschweig by the accredited SPEKTRA Calibration-Laboratory D-K-15183-01-00
- Broad amplitude range from 20 g_n ... 4.000 g_n
- Type of excitation: sinusoidal shock, adjustable signal shape or burst
- Independent control of amplitude and pulse width (within certain ranges, see table)
- Excellent repeatability of shock
- Position of DUT: horizontal
- Sensor mass (DUT) up to 30 gram
- Realization of **fully automatic calibrations** according to own test regime (up to 1 shock/s)
- Calibration of sensors with / without measuring amplifier and measuring systems (sensor with signal conditioner)
- Direct connection of piezo-resistive sensors through integrated PR signal conditioner
- Determination of aptitude for calibration (bridge resistance, offset, drift) of PR sensors in conjunction with software option PR measurement
- **Upgradeable** to a combined calibration system e.g. CS18 MS / HF

CS18 MS

Calibration System Medium-Shock Secondary

Components

- Vibration control system SRS-35 by SPEKTRA with integrated PR signal conditioner
- Shock exciter SE-220 HOP-MS
- Reference standard **BN-02**
- PA 14-500 power amplifier

Performance Specification ¹⁾

Max. sensor mass (DUT):30 gramMin. shock amplitude:20 gn

Shock Amplitude	PWHS ²⁾	PWFS ²⁾	Uncertainty ³⁾
20 g _n 250 g _n	180 µs	360 µs	< 2.0 %
20 g _n 500 g _n	125 µs	250 µs	< 2.0 %
20 <i>g</i> _n 1,000 <i>g</i> _n	70 µs	140 µs	< 2.5 %
20 <i>g</i> _n 4,000 <i>g</i> _n	40 µs	80 µs	< 3.0 %

 $^{1)}$ All data for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

²⁾ PWHS = max. Pulse Width Half Sine Wave; max. PWFS = Pulse Width Full Sine Wave

³⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor)

D:	Length	approx. 2.5 m
Dimensions Hopkinson Bar	Height	approx. 1.3 m
hopkinoon Bui	Width	approx. 0.5 m

November 2013

Applications

- Secondary calibration of shock-sensors as well as complete measuring instruments in form of a measuring chain, with very high precision and efficiency, according to ISO 16063-22 (calibration by the comparison method)
- Secondary calibration of accelerometer standards
- Testing of small parts (e.g. MEMS)

Range of Use

- Certified calibration laboratories
- Departments of **measuring instrument** verification in research and industry, particular in automotive crash test laboratories
- Quality assurance in sensor manufacturing

- Traceable to Physikalisch-Technische Bundesanstalt (PTB) Braunschweig by the SPEKTRA Calibration-Laboratory D-K-15183-01-00 (DAkkS Calibration Certificate)
- Pneumatic shock exciter with integrated reference standard; Air Bearing for Anvil
- Broad amplitude range from 5 gn ... 10,000 gn
- Type of excitation: shock half sine
- Pulse duration up to 5 ms
- Sensor (DUT) mass up to **50 gram** (can be higher for testing applications)
- Excitation axis: vertical
- Good repeatability of shock
- Realization of **all automatic calibrations** according to own test regime (up to 1 shock/s)
- Calibration of sensors with / without signal conditioner
- Direct connection of piezo-resistive sensors by means of integrated PR signal conditioner
- Determination of **aptitude for calibration** (bridge resistance, offset, drift) of PR sensors in conjunction with software **PR measurement**
- **Upgradeable** to a combined calibration systems, e.g. type CS18 LF / LMS
- Automated regulation of amplitudes up to 600 g_n is possible

CS18 LMS Calibration System Low-Medium-Shock

Components

- Control system SRS-35 by SPEKTRA with integrated PR signal conditioner
- Shock exciter SE-201 PN-LMS by SPEKTRA with Control box
- Reference standard transducer BN-02
- Standard PC

Performance specification of CS18 LMS with reference standard BN-02

for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

Shock Acceleration		5 g _n 10,000 g _n
Pulse Width	0.1 ms 5 ms	
Sensor Mass (DUT)	max. 50 gram	
	5 g _n 20 g _n	< 2,0 %
Expanded Upcortainty ¹⁾	> 20 g _n 200 g _n	< 1,5 %
Expanded Oncertainty	> 200 g _n 4,000 g _n	< 1.8 %
	> 4,000 g _n 10,000 g _n	< 3,0 %

¹⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor)

Specification of integrated PR module

Module for supplying power to piezo-resistive sensors or for supplying DC power to sensors (e.g. VC types)

Components of the integrated PR module

- Plug-in module to CS18 electronic unit SRS-35
- External connecting box for individual sensor adaptation
- Software for determining the electrical aptitude for calibration of PR sensors (measurement of bridge resistance, offset and offset drift, offset compensation, shunt calibration, insulations test)

Options for the PR module

- Individual external connection boxes
- TEDS for PR sensors

Technical Data PR module

Bridge Power Supply	4-lead or 6-lead configuration selectable, power will be measured and controlled
Voltage Range	-10 V 0 V +10 V
Current	maximum 100 mA
Bridge Completion	resistors for completing single-arm and two-arm partial bridges can be integrated in a connecting box (dimensioning according to specific sensor)
Shunt Resistors	2 units can be integrated in a connecting box, resistance values can be stored in an EEPROM
Amplifier	0 42 dB
Gain Steps (DC)	factors to be set by software: 1, 2, 4, 8, 16, 32, 64, 128
Offset	offset measurement and offset compensation can be performed

Options for calibration systems: see leaflet CS18-extras

All data are subject to change without notice

CS18 HS Calibration System High-g-Shock Secondary

Applications

- Secondary calibration of shock transducers as well as complete measuring instruments in form of a measuring chain, with very high precision and efficiency, according to ISO 16063-22 (calibration by the comparison method)
- Secondary calibration of shock accelerometer reference standards

Range of Use

- Accredited calibration laboratories
- Departments of **measuring instrument verification** in research and development particular in the aviation and space travel or in the military industry
- Quality assurance in sensor manufacturing
- National metrology laboratories as highest measurement authorities

- **Traceable** to **P**hysikalisch **T**echnische **B**undesanstalt (**PTB**) Braunschweig by the accredited SPEKTRA Calibration-Laboratory D-K-15183-01-00
- Type of excitation: sinusoidal shock
- Shock amplitudes up to 100.000 gn
- Excellent repeatability of shock
- Position of DUT: horizontal
- Sensor mass (DUT) up to 30 gram
- Realization of all automatic calibrations according to own test regime (up to 20 shocks/ minute)
- Calibration of sensors with / without measuring amplifier and measuring systems (sensor with signal conditioner)
- Direct connection of piezo-resistive sensors through integrated PR signal conditioner
- Determination of **aptitude for calibration** (bridge resistance, offset, drift) of PR sensors in conjunction with software **PR measurement**
- **Upgradeable** to a combined calibration system e.g. CS18 HS / HF

CS18 HS

Calibration System High-g-Shock Secondary

Components

- Vibration control system SRS-35 by SPEKTRA with integrated PR signal conditioner
- Shock exciter SE-221 HOP-HS
- Reference standard strain gauge BN-19
- High speed Data Acquisition System

Performance Specification¹⁾

Shock Acceleration		10,000 g _n 100,000 g _n
Pulse Width PWFS / PWHS ²⁾		typical 50 µs / 25 µs
Sensor Mass (DUT)		max. 30 gram
Uncertainty ³⁾	10,000 g _n 20,000 g _n	< 3 %
	20,000 g _n 50,000 g _n	< 4 %
	50,000 g _n 100,000 g _n	< 5 %

 $^{1)}\,$ All data for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

 $^{2)}\,$ PWHS = Pulse Width Half Sine Wave; PWFS = Pulse Width Full Sine Wave

³⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor)

Air Supply		8 bar
	Length	approx. 3.5 m
Dimensions Honkinson Bar	Height	0.8 m 1.2 m
поркілзоп ваг	Width	approx. 1 m

All data are subject to change without notice

November 2013

CS18 VHS Calibration System Very-High-g-Shock Secondary

Applications

- Secondary calibration of shock transducers as well as complete measuring instruments in form of a measuring chain, with very high precision and efficiency, according to ISO 16063-22 (calibration by the comparison method)
- Secondary calibration of shock accelerometer reference standards

Range of Use

- Accredited calibration laboratories
- Departments of **measuring instrument verification** in research and development particular in the aviation and space travel or in the military industry
- Quality assurance in sensor manufacturing
- National metrology laboratories as highest measurement authorities

- **Traceable** to **P**hysikalisch **T**echnische **B**undesanstalt (**PTB**) Braunschweig by the accredited SPEKTRA Calibration-Laboratory D-K-15183-01-00
- Type of excitation: sinusoidal shock
- Shock amplitudes up to 200.000 gn
- Excellent repeatability of shock
- Position of DUT: horizontal
- Sensor mass (DUT) up to 15 gram
- Realization of all automatic calibrations according to own test regime (up to 20 shocks/ minute)
- Calibration of sensors with / without measuring amplifier and measuring systems (sensor with signal conditioner)
- Direct connection of piezo-resistive sensors through integrated PR signal conditioner
- Determination of **aptitude for calibration** (bridge resistance, offset, drift) of PR sensors in conjunction with software **PR measurement**
- **Upgradeable** to a combined calibration system e.g. CS18 VHS / HF

CS18 VHS

Calibration System Very-High-g-Shock Secondary

Components

- Vibration control system SRS-35 by SPEKTRA with integrated PR signal conditioner
- Shock exciter SE-222 HOP-VHS
- Reference standard strain gauge BN-19
- High speed Data Acquisition System

Performance Specification¹⁾

Shock Acceleration		10,000 g _n 200,000 g _n
Pulse Width PWFS / PWHS ²⁾		typical 40 μs / 20 μs
Sensor Mass (DUT)		max. 15 gram
Uncertainty ³⁾	10,000 g _n 20,000 g _n	< 3 %
	20,000 g _n 50,000 g _n	< 4 %
	50,000 g _n 100,000 g _n	< 5 %
	100,000 g _n 200,000 g _n	< 8 %

 $^{1)}\,$ All data for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

 $^{2)}\,$ PWHS = Pulse Width Half Sine Wave; PWFS = Pulse Width Full Sine Wave

³⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor)

Air Supply		8 bar
.	Length	approx. 3.5 m
Dimensions Honkinson Bar	Height	0.8 m 1.2 m
поркілзоп ваг	Width	approx. 1 m

All data are subject to change without notice

November 2013

CS18P MS Primary Calibration System Medium-Shock

Applications

- **Primary calibration** of shock transducers as well as complete measuring instruments (measuring chain) with very high precision and efficiency, according to **ISO 16063-13**
- Primary calibration of shock accelerometer reference standards

Typical Users

- National metrology laboratories
 as highest measurement authorities
- Accredited calibration laboratories
- Calibration laboratory departments of industrial companies particular in automotive, aviation or space travel industry
- Quality assurance in sensor manufacturing

- **Traceable** to **P**hysikalisch **T**echnische **B**undesanstalt (**PTB**) Braunschweig by the accredited SPEKTRA Calibration-Laboratory D-K-15183-01-00
- Broad amplitude range from 2 g_n ... 5,000 g_n
- Type of excitation: sinusoidal shock, adjustable signal shape or burst
- Independent control of amplitude and pulse width (within certain ranges, see table)
- Excellent repeatability of shock
- Sensor mass (DUT) up to 30 gram
- Realization of fully automatic calibrations according to own test regime (up to 1 shock/s)
- Calibration of sensors with / without measuring amplifier and measuring systems
- Direct connection of piezo-resistive sensors through integrated PR signal conditioner
- Determination of aptitude for calibration (bridge resistance, offset, drift) of PR sensors in conjunction with software option PR measurement
- Integration of a **reference standard** for secondary calibration according to ISO 16063-22
- **Upgradeable** to a combined calibration system e.g. CS18P MS / HF

CS18P MS

Primary Calibration System Medium-Shock

Components

- Vibration control system SRS-35 by SPEKTRA with integrated PR signal conditioner
- Shock exciter SE-220 HOP-MS
- Reference standard laser vibrometer PLV-02
- Reference standard BN-02 for secondary calibration
- High speed Data Acquisition System
- PA 14-500 power amplifier

Performance Specification Primary¹⁾

Max. sensor mass (DUT): 30 gram

Min. shock amplitude: $2 g_n$

Shock Amplitude	Max. PWHS ²⁾	Max. PWFS ²⁾	Uncertainty ³⁾
2 g _n 20 g _n	200 µs	400 µs	< 3 %
20 g _n 250 g _n	200 µs	400 µs	< 1,5 %
20 g _n 550 g _n	125 µs	250 µs	< 1,5 %
20 g _n 1,000 g _n	100 µs	200 µs	< 1,5 %
20 g _n 4,000 g _n	60 µs	120 µs	< 2 %
20 g _n 5,000 g _n	40 µs	80 µs	< 2,5 %

¹⁾ All data for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

²⁾ PWHS = Pulse Width Half Sine Wave; PWFS = Pulse Width Full Sine Wave

³⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor)

	Length	approx. 2,5 m
Dimensions Honkinson Bar	Height	approx. 1,3 m
	Width	approx. 0,5 m

All data are subject to change without notice

Applications

- **Primary calibration** of shock sensor transducers as well as complete measuring instruments (measuring chain) with very high precision and efficiency, according to ISO 16063-13
- Primary calibration of shock accelerometer reference standards

Range of Use

- National metrology laboratories as highest measurement authorities
- Accredited calibration laboratories
- Departments of **measuring instrument verification** in research and development particular in the aviation and space travel
- Quality assurance in sensor manufacturing

- Traceable to Physikalisch Technische Bundesanstalt (PTB) Braunschweig by the accredited SPEKTRA Calibration-Laboratory D-K-15183-01-00
- Broad amplitude range to 75.000 g_n, optionally up to 150.000 g_n with High Speed Vibrometer
- Type of excitation: sinusoidal shock
- Excellent repeatability of shock
- Sensor mass (DUT) up to 30 gram
- Realization of **all automatic calibrations** according to own test regime (up to 20 shocks/min)
- Calibration of sensors with / without measuring amplifier and measuring systems
- Direct connection of piezo-resistive sensors through integrated PR signal conditioner
- Determination of aptitude for calibration (bridge resistance, offset, drift) of PR sensors in conjunction with Software option PR measurement
- Integration of a **reference standard** for secondary calibration according to ISO 16063-22
- **Upgradeable** to a combined calibration system e.g. CS18P HS / HF

CS18P HS

Primary Calibration System High-g-Shock

Components

- Vibration control system SRS-35 by SPEKTRA with integrated PR signal conditioner
- Shock exciter SE-221 HOP-HS
- Reference standard laser vibrometer PLV-03
- Reference standard for secondary calibration
- High speed Data Acquisition System

Performance Specification Primary¹⁾

Shock Acceleration		1,000 <i>g</i> _n 75,000 <i>g</i> _n
Pulse Width PWFS / PWHS ²⁾		typical 50 µs / 25 µs
Sensor Mass (DUT)		max. 30 gram
Uncertainty ³⁾	1,000 g _n 2,000 g _n	< 2,2 %
	2,000 g _n 20,000 g _n	< 2,5 %
	20,000 g _n 50,000 g _n	< 2,8 %
	50,000 g _n 75,000 g _n	< 3,1 %
	75,000 g _n 150,000 g _n	< 5 % ⁴⁾

 $^{1)}$ All data for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

²⁾ PWHS = Pulse Width Half Sine Wave; PWFS = Pulse Width Full Sine Wave

³⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor) ⁴⁾ with optional high speed vibrometer

Air Supply		8 bar
	Length	approx. 3.5 m
Dimensions Hopkinson Bar	Height	0.8 m 1.2 m
	Width	approx. 1 m

All data are subject to change without notice

Application

- Very low frequency calibration of pressure transducers and pressure measuring devices
- Pressure chamber secondary calibration of measuring microphones and microphone measuring chains

Range of use

- Calibration laboratories
- Departments of measuring instrument verification in research and industry, for example in the fields of automotive, aviation and space industry, military research, medical and environmental engineering, ...
- Quality assurance in manufacturing of pressure transducer and measuring microphones.

- True **pressure chamber calibration** with an acoustic calibrator
- Calibration of pressure transducers
- Calibration of all established measuring microphones (capacitor and electrets microphones, ...)
- No special mechanical adaptation necessary
- Complete exposition of the test object to the pressure field
- **Supply** of an alternating sound pressure level for the calibration of dynamic pressure measuring chains and devices, in particular of sound level meters
- Upgradeable to a combined acoustical calibration system e.g. CS18 SPL / SPL-VLF or an CS18 FF / SPL-VLF

CS18 SPL-VLF Calibration System SPL Very Low Frequency

Components

- Vibration control system SRS-35, SPEKTRA
- SQ-03 Very-low-frequency pressure generator, SPEKTRA
- PA14-80 Power amplifier, SPEKTRA
- Reference standards:
 - BN-A-03 Acoustic calibrator pistonphone type LS (124 dB / 250 Hz)
 - BN-A-04 pressure reference standard
- Standard-PC

Specification of CS18 SPL-VLF

for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

Description	Calibration System CS18 for very low frequency sound pressure level
Size of pressure chamber	20 cm x 20 cm x 65 cm
Signal form	sinusoidal
Frequency range	0.1 Hz 31.5 Hz
Pressure range	10 Pa 32 Pa 114 dB 124 dB
Total harmonic distortion	up to ≤ 0.3 %
Measurement uncertainty 1)	≤ 0.05 dB ≤ 0.5 %

¹⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor)

Calibration procedure:

- · Calibration by the method of comparison with a reference standard pressure sensor
- · Calibration by the method of comparison among the test objects

Application

- Pressure chamber **secondary calibration** of measuring microphones acc. to **IEC 61094-5**
- Pressure chamber secondary calibration of sound level meters and sound level measuring chains according to IEC 61672
- Calibration of acoustic calibrators and pistonphones according to IEC 60942

Range of Use

- Certified calibration laboratories
- Departments of **measuring instrument verification** in research and industry, for example test laboratories in the automotive field or in the aviation and space industry
- Quality assurance in manufacturing of microphones, sound level meters and dosimeters

- Reference standards **traceable** to **P**hysikalisch Technische **B**undesanstalt Braunschweig (**PTB**) by the accredited SPEKTRA Calibration Laboratory D-K-15183-01-00 (**DAkkS Calibration Certificate**)
- True **pressure chamber calibration** with an acoustic calibrator
- Calibration of measuring microphones (capacitor and electret microphones in the sizes 1", 1/2" and 1/4")
- **Supply** of a sound pressure level for the calibration of sound level meters and measuring chains
- Calibration of acoustic calibrators
- Upgradeable to a combined acoustical calibration system e.g. CS18 SPL / FF, CS18 SPL / SPL-VLF

CS18 SPL Calibration System Sound Pressure Level

Components (standard)

- Vibration control system SRS-35, SPEKTRA with system cables
- Active electro-acoustic coupler SQ-4.2 for 1/2" Microphones and 1/4" adapter
- Microphone / Calibrator holder fixture
- High-End Power amplifier with system cables
- Working standard microphone / calibrator: GN-A-02 ¹/₂" condenser microphone WS2P, with ¹/₂" standard preamplifier and LS-Adapter BN-A-02 acoustic calibrator class LS, (94 dB / 1,000 Hz and 114 dB / 1,000 Hz)
- Measurement uncertainty budget for microphone calibration

Optional reference standards (recommended)

- BN-A-01 1/2" condenser microphone LS2P, with 1/2" VIC (Voltage Insert Calibration) preamplifier
- BN-A-03 Acoustic calibrator pistonphone type LS (124 dB / 250 Hz)

Optional calibration adapter and equipment:

- · Calibration adapters for surface microphones
- Active electro-acoustic coupler SQ-4.1 for 1" Microphones

Specification of CS18 SPL for the environmental conditions in the laboratory:

Temperature: 23°C (± 2°C), Relative humidity: 30 % ... 75 %, Environmental noise: LZeq < 60 dB

Sound Pressure Level 94 dB, adjustable in the range of 64 dB 124 dB ²) Device under test Frequency range / Sound pressure level Expanded Uncertainty ¹) Microphone calibration Expanded Uncertainty ¹) Sound level meter calibration Calibration Method 1: comparison with Reference Standard Microphone and acoustic coupler 31.5 Hz 5,000 Hz 0.20 dB 0.25 dB Measuring Microphones with ½" Diameter, Sound Level Meters and Measuring Chains 31.5 Hz 5,000 Hz 0.20 dB 0.25 dB > 5,000 Hz 10,000 Hz 0.25 dB 0.30 dB 0.30 dB > 10,000 Hz 16,000 Hz 0.45 dB 0.50 dB Calibration Method 2: absolute calibration with Calibrator / Pistonphone Pistonphone	Type of Sound Field: Pressure Chamber					
Device under testFrequency range / Sound pressure levelExpanded Uncertainty 1) Microphone calibrationExpanded Uncertainty 1) Sound level meter calibrationCalibration Method 1: comparison with Reference Standard Microphone and acoustic couplerMeasuring Microphones with ½" Diameter, Sound Level Meters and Measuring Chains31.5 Hz 5,000 Hz 0.20 dB0.25 dB> 5,000 Hz 10,000 Hz0.25 dB0.30 dB> 10,000 Hz 16,000 Hz0.45 dB0.50 dBCalibration Method 2: absolute calibration with Calibrator / Pistonphone	Sound Pressure Level		94 dB, adjustable in the	range of 64 dB \dots 124 dB $^{2)}$		
Calibration Method 1: comparison with Reference Standard Microphone and acoustic coupler Measuring Microphones with ½" Diameter, Sound Level Meters and Measuring Chains 31.5 Hz 5,000 Hz 0.20 dB 0.25 dB 0.30 dB 0.30 dB 0.30 dB 0.30 dB 0.50 dB	Device under test	Frequency range / Sound pressure level	Expanded Uncertainty ¹⁾ Expanded Uncertainty Microphone calibration Sound level meter calibra			
Measuring Microphones with ½" Diameter, Sound Level Meters and Measuring Chains 31.5 Hz 5,000 Hz 0.20 dB 0.25 dB > 5,000 Hz 10,000 Hz 0.25 dB 0.30 dB > 10,000 Hz 16,000 Hz 0.45 dB 0.50 dB Calibration Method 2: absolute calibration with Calibrator / Pistonphone	Calibration Method 1: co	mparison with Reference Stand	dard Microphone and acous	stic coupler		
with ½" Diameter, Sound Level Meters and Measuring Chains > 5,000 Hz 10,000 Hz 0.25 dB 0.30 dB > 10,000 Hz 16,000 Hz 0.45 dB 0.50 dB Calibration Method 2: absolute calibration with Calibrator / Pistonphone	Measuring Microphones	31.5 Hz 5,000 Hz	0.20 dB	0.25 dB		
Measuring Chains > 10,000 Hz 16,000 Hz 0.45 dB 0.50 dB Calibration Method 2: absolute calibration with Calibrator / Pistonphone	with ½" Diameter, Sound Level Meters and	> 5,000 Hz 10,000 Hz	0.25 dB	0.30 dB		
Calibration Method 2: absolute calibration with Calibrator / Pistonphone	Measuring Chains	> 10,000 Hz 16,000 Hz	0.45 dB	0.50 dB		
•	Calibration Method 2: absolute calibration with Calibrator / Pistonphone					
Measuring Microphones 250 Hz / 124 dB 0.20 dB 0.25 dB	Measuring Microphones	250 Hz / 124 dB	0.20 dB	0.25 dB		
with ½" Diameter, Sound 1,000 Hz / 94 dB 0.20 dB 0.25 dB	with ½" Diameter, Sound Level Meters and	1,000 Hz / 94 dB	0.20 dB	0.25 dB		
Measuring Chains 1,000 Hz / 114 dB 0.20 dB 0.25 dB	Measuring Chains	1,000 Hz / 114 dB	0.20 dB	0.25 dB		
Calibration Method 3: substitution method with the Reference Calibrator / Pistonphone						
Calibrators and 250 Hz / 124 dB Approved acoustic Calibrators / Pistonphones Other acoustic Calibrators and Pictonphones		250 Hz / 124 dB	Approved acoustic Calibrators / Pistonphones	Other acoustic Calibrators		
Pistonphones 1,000 Hz / 94 dB (class 1 and 2):	Pistonphones	1,000 Hz / 94 dB	(class 1 and 2):	and Pistoriphones:		
1,000 Hz / 114 dB 0.15 dB 0.25 dB		1,000 Hz / 114 dB	0.15 dB	0.25 dB		

¹⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor)

²⁾ 94 dB sound pressure level is the preferred value. The maximum sound pressure level depends on the frequency (see datasheet of coupler) **Option for calibration system:**

CLP - Temperature, Hygrometer and Air Pressure sensor with all automatic data transfer to the calibration system. This option is especially recommended if the system is operated with the additional reference standards (pistonphone and calibrator), in order to get the correction factors depending on the environmental conditions.

All data are subject to change without notice

CS18 FF Calibration System Free Field

Application

- Secondary calibration of measuring microphones, sound level meters and other acoustic sensors according to IEC 61094-8 and IEC 61672
- Periodic single qualification according to IEC 61672-3
- Calibration of calibrators according to IEC 60942
- Acoustical measurements like:
 - Measurement of directivity characteristic
 - Determination of diffuse-field sensitivity
 - Measurement of acoustic emission of small objects
- Calibration of constructively mechanically nonstandard microphones, e.g. external microphone units, optionally in axial and radial direction of measurement

Range of Use

- Certified calibration laboratories
- **Measuring instrument verification** in research and industry, for example civil engineering, aviation and automotive engineering
- Quality assurance in manufacturing of microphones and sound level meters

Features

 Reference standards **traceable** to Physikalisch Technische Bundesanstalt (PTB) Braunschweig

by the SPEKTRA Calibration Laboratory D-K-15183-01-00 (DAkkS-calibration certificate)

- True **free-field calibration** in acoustically dead (anechoic) chamber
- Calibration of any measuring microphone (condenser, electrets, electro-dynamic etc.) with any conctruction with / without protection grid
- **Supply** of a defined free-field sound pressure level for the calibration of sound level meters
- Calibration of acoustic calibrators
- Upgradable to other calibration systems, e.g. CS18 FF / SPL or CS18 FF / SPL-VLF

Components:

- Vibration control system SRS-35 by SPEKTRA
- Power amplifier PA 14-80 by SPEKTRA
- Reference standards
 - ½" condenser microphone cartridge class LS2P with ½" VIC (Voltage Insert Calibration) preamplifier
 - Sound acoustic calibrator class $\mbox{LS},$ (94 dB / 1,000 Hz and 114 dB / 1,000 Hz)
- Working standards
 - 1/2" condenser microphone cartridge class WS2F with preamplifier
- Microphone fixture, accessories, cables
- Standard-PC
- Dedicated transportable **acoustically dead (anechoic) chamber** by SPEKTRA, completely lined with wedge-shaped absorbers, with loudspeaker, for alternately holding the reference standard and test object, with small window for reading off the indications of compact sound level meters without electrical output channel

Specification of CS18 FF with reference standard microphones listed above

for environmental conditions: temperature $23^{\circ}C$ (± $2^{\circ}C$) and relative humidity 30 % ... 75 % and environmental noise of the laboratory: **LZeq < 60 dB**

Anaphaia Chambor	Outside Dimensions	2.00 m x 2.00 m x 2.40 m			
Allechoic Chamber	Inside Dimensions	1.25 m x 1.25 m x 1.65 m	1.25 m x 1.25 m x 1.65 m		
Type of the Sound Field		Free field of plane progressive v	vaves		
Calibration Method		Comparison with reference standard, substitution me			
Recommended Sound tion of microphones ²⁾	Pressure Level for calibra-	sure Level for calibra-84.0 dB in the range of 125 Hz - 20 kHz at the calibration point (84 cm distance)			
	Magazzing Migraphanaa	125 Hz < 250 Hz	0.35 dB		
Frequency Range	with Different Diameter	250 Hz 8,000 Hz	0.30 dB		
Uncertainty ¹⁾	Measuring Chains with Separate Microphones	> 8,000 Hz 10,000 Hz	0.40 dB		
		> 10,000 Hz 20,000 Hz	0.45 dB		
Recommended Sound calibration of sound lev	Pressure Level for /el meters ²⁾	84,0 dB in the range of 125 Hz - 200 Hz 94,0 dB in the range of 200 Hz - 10 kHz 84,0 dB in the range of 10 kHz - 20 kHz at the calibration point (84 cm distance)			
	Sound Loval Motors with	125 Hz < 250 Hz	0.50 dB		
Frequency Range	Sound Level Meters with Microphone Mounted Directly to the Body of the	250 Hz 8,000 Hz	0.40 dB		
Uncertainty ¹⁾		> 8,000 Hz 10,000 Hz	0.50 dB		
		> 10,000 Hz 20,000 Hz	0.60 dB		

Electrical calibration of sound level meter:

Electrical Tests		Supply of electrical input signal for the electrical tests according to IEC 61672-3, ED1	
Input Signal and Expanded Uncertainty ¹⁾	Sound Level Meters, Measuring Systems	4 kHz tone burst (0.25 ms 1 s)	0.20 dB
		C-weighted peak level	0.20 dB
		Level linearity, Frequency weighting, overload indication	0.20 dB

¹⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement) with k = 2 (coverage factor)

²⁾ Recommended sound pressure level for best stability and lowest uncertainty. Higher sound pressure levels are possible (not included in table).

List of References

Calibration Systems CS18, Vibration and Shock Exciters

National Laboratories and Governmental Organizations

BAST – Bundesanstalt für Straßenwesen (Germany) **Beijing Orient Institute of Metrology & Test (China)** CEM – Centro Español de Metrologia (Spain) CENAM – Centro Nacional de Metrologia (Mexico) CESTA – Centre d'etudes scientifiques et techniques d'Aquitaine (France) CMI – Czech Metrology Institute (Czech Republic) Eidgenössisches Institut für Metrologie METAS (Switzerland) FTZ – Forschungs- und Technologiezentrum Deutsche Bahn AG (Germany) Guangxi Metrology (China) GUM – GŁÓWNY URZĄD MIAR (Poland) IM2 – Instituto de Innovación en Minería y Metalurgía (Chile) KEBS – Kenya Bureau of Standards (Kenya) KRISS - Korea Research Institute of Standards and Science (South Korea) National Institute of Metrology (Thailand) National Institute of Metrology (China) NPL National Physical Laboratory (INDIA) PTB Physikalisch Technische Bundesanstalt (Germany) SIMT Shanghai Institute of Measurement and Testing Technology (China) STQC – Standardisation Testing and Quality Certification (India) TSU Technicky Skusobny Ustav Piestany (Slovakia) TTAI TÜV Rheinland TNO Automotive International B.V. (Netherlands) **TUEV SUED CZ Praha (Czech Republic)**
List of References

Automotive Industry Customers

Ashok Leyland (India)

- AUDI AG (Germany)
- **BMW AG (Germany)**

Changan Automobile Company Ltd. (China)

Conti TEMIC microelectronic GmbH (Germany)

Daimler AG (Mercedes-Benz) (Germany)

DENTON COE (Germany)

Ford Werke AG (Germany)

Humanetics (USA)

Jinheng Automotive Safety Technology Holdings (China)

Magna Steyr Fahrzeugtechnik AG & Co KG (Austria)

MAN Nutzfahrzeuge AG (Germany)

NTSEL - National Traffic Safety and Environment Laboratory (Japan)

PMG (Canada)

Shanghai Volkswagen (China)

Skoda Auto (Czech Republic)

Takata Petri AG (Germany)

TIANJIN – Auto (China)

TRW Automotive (Germany)

Valeo Klimasysteme GmbH (Germany)

Universities

Leibnitz University Kühlungsborn (Germany) Peoples Friendship University (Russia) Sichuan University (China) Technical University Madrid (Spain)

University Brno (Czech Republic)

University Rostov on Don (Russia)

List of References

Aerospace and Defense

ADD Agency for Defense Development (South Korea) Airbus Toulouse (France) CASSIDIAN (Germany) DSTO Defense Science and Technology Organization (Australia) EADS Astrium (France) Eurocopter Deutschland GmbH (Germany) European Aeronautic Defense and Space Company (multiple countries in Europe) IABG - Test Organization for the military air- and aerospace industry (Germany) MTU Aero Engines GmbH (Germany) NavAir - Naval Air Systems Command (USA) Rolls Royce Aero Engines (Germany) Sandia National Laboratories (USA) Wehrtechnische Dienststelle für Kraftfahrzeuge und Panzer (Germany)

Sensor producer Customer

AIS GmbH (Germany) ASC GmbH (Germany) Beijing Electrical Institute (China) DMT GmbH (Germany) Jiangyin Electric (China) Kistler (multiple countries in Europe and Asia) MSI – ENTRAN (France) MSI Measurement Specialties Inc. (China) MSI Measurement Specialties Inc. (USA) SHS Schmitt-Hofmann Systems GmbH (Germany) Siemens AG Bad Neustadt (Germany) X-FAB Semiconductor Foundries AG (Germany)

List of References

Other Industrial Customers

Adams Technologies Private LTD. (India) CEV - TEK Ltd. Sti. (Turkey) Deutsche Bahn AG (Germany) esz AG calibration & metrology Eichenau (Germany) Hanwha Corporation Gumi Plant (South Korea) ITD Kinding (Germany) Kalibrier-Dienst-Saliger (Germany) POONGSAN FNS CORPORATION (South Korea) Robert Bosch GmbH (Germany, Czech Republic) Sarov Labs (Russia) Siemens AG (Germany) Testo industrial services GmbH Kirchzarten (Germany) Trescal GmbH (Germany)

All data are subject to change without notice

January 2014

CS18 Optional Extras

Overview

In its standard configuration, every CS18 calibration system is optimized for a specific practical application. Its performance, however, can be extended by means of optional extras.

On customer's demand, dedicated options can be compiled and offered with the system.

Software-Option	S
TEDS	Calibration of sensors with integrated electronic data sheet (IEEE P1451.4) Reading and writing of calibration data in TEDS-modules of ICP [®] -sensors. In combination with the option PR this can also be used for piezo-resistive sensors.
Data Base	Data Base Connection Basic package of CS18 Software for connection to a sensor or measuring instruments data base of customers, plus individual adaptation charged on T&M basis
CSDB	Data Base Interface to a Microsoft[®] SQL Server Safe and comfortable storage / retrieval of sensor and calibration data (including test configurations) by means of a SQL-Server
PHASE	Phase-calibration, Determination of angle of phase difference Phase-calibration of sensors; in conjunction with optional extra CAL-Q-U-ICP [®] also applicable to charge and voltage amplifiers
CAL-Q-U-ICP®	Calibration of gain magnitude of signal conditioners (incl. CAO reference capacitors) Calibration of gain magnitude of charge, voltage and ICP [®] amplifiers; can also be used in conjunction with optional extra PHASE to determine the phase shift of charge and voltage amplifiers
MS-C	<i>Multi-sine calibration of sensors</i> Reduced calibration time by simultaneous excitation of several frequencies
Hardware-Option	IS
CS18 ZK-STD	Accessories Case for CS18 Acceleration Calibration Systems Contains, amongst others, numerous mounting adapters, a torque wrench, electrical adapters When equipping a new calibration laboratory this case should always be included as basic equip- ment.
CS18 ZK-HOP	Accessories Case for CS18(P) HS Contains, amongst others, replacement projectiles for the SE-221 HOP-HS, sensor cables, hearing protection When installing a CS18(P) HS, this case should always be included as basic equipment.
PR	Integrated signal conditioner allowing direct connection of piezo-resistive sensors Programmable sensor power supply to PR sensors and VC types; includes software for the meas- urement of electrical parameters of PR sensors (bridge resistors, zero drift etc.)
Sensor Supply	Integrated signal conditioner for sensor supply of VC types
Mobil	<i>Transportation trolley or case for on-site calibration</i> Available for CS18 Secondary Calibration Systems except for the VLF
PRIMUS	Hardware and software addendum to primary calibration according to ISO 16063-11 For upgrading a secondary system - type CS18 HF or CS18 VLF
TRANS	Option to determine the transversal transfer coefficient as a function of operating angle for CS18 VLF systems, measurement of transfer coefficient as a function of angle and frequency, a valuable tool to determine the cross sensitivity of sensors
Other Options	
AMC	Annual Maintenance Contract This contract includes the annual recalibration of a CS18 system, the recalibration of a reference standard accelerometer, software updates for all supplied working modes and extended support.
MUB	Determination and compilation of an individual measurement uncertainty budget in the framework of supplying a CS18 calibration system The MUB will be determined at the customer's site for the respective mode of operation and type of equipment by tests and investigations at the final place of operation

CS18 Optional Extra

CAL-Q-U-ICP®

Application

• Calibration of charge, voltage and ICP[®] amplifiers; in conjunction with the optional extra PHASE also applicable to PHASE calibration of signal conditioners

Feature

• Frequency range 0.2 Hz ... 50 kHz

Performance Parameter

Charge Amplifier:

Range of Use

- Certified calibration laboratories
- Departments of measuring instrument verification in research and industry
- Quality assurance in sensor manufacturing Electrical Calibration of Signal Conditioners

Frequency Range		Expanded Measurement Uncertainty ¹⁾ of the Transfer Coefficient Amplitude / Phase ²⁾	Measuring Range (Peak Value)
From	То		
0.2 Hz	< 1 Hz	0.5 % / 0.75°	
1 Hz	5,000 Hz	0.4 % / 0.5°	
> 5,000 Hz	10,000 Hz	0.4 % / 1.0°	1 pC 10 nC
> 10,000 Hz	20,000 Hz	0.6 % / 2.0°	
> 20,000 Hz	50,000 Hz	1.0 %	

Voltage and ICP[®] Amplifier:

Frequency Range		Expanded Measurement Uncertainty ¹⁾ of the Transfer Coefficient Amplitude / Phase ²⁾	Measuring Range (Peak Value)
From	То		
0.2 Hz	< 1 Hz	0.4 % / 0.75°	
1 Hz	20,000 Hz	0.3 % / 0.5°	10 mV 10 V
> 20,000 Hz	50,000 Hz	1.0 %	

¹⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor)

²⁾ Only valid in combination with the optional extra PHASE

CS18 Optional Extra PR Measurement (PR-M®)

Applications

• **PR signal conditioner** power supply of piezoresistive (bridge), variable capacitance and similar sensors used with the CS18 calibration system

Range of Use

- Certified calibration laboratories
- Departments of measuring instrument verification in research, development and industry, particularly in automotive crash test laboratories
- Quality assurance in sensor manufacturing

- Calibration of piezo-resistive sensors
- Determination of aptitude for calibration (bridge resistance, offset, offset drift) of PR sensors in conjunction with software PR measurement
- Measurement of input and output resistance
- Static calibration in the local earth gravity field (+/- 1 g_n)

CS18 Optional Extra PR Measurement (PR-M®)

Components

- Plug-in module to CS18 vibration control system SRS-35
- External connecting box for individual sensor adaptation
- Software for determining the electrical aptitude for calibration of PR sensors (measurement of bridge resistance, offset and offset drift, offset compensation, shunt calibration, isolation test)

Technical Specification PR Module

Bridge Power Supply	4-wire or 6-wire technique
Voltage Range	-10 V_{DC} 0 V_{DC} +10 V_{DC} , adjustable
Current	max. 100 mA
Bridge Completion	resistors for completing a quarter or half bridge can be integrated in a
Shunt Resistors	2 units can be integrated in a connecting box,
Amplifier	0 42 dB
Gain Steps (DC)	factors to be set by software: 1, 2, 4, 8, 16, 32, 64, 128
Offset	offset measurement and offset compensation can be performed

Options for the PR Module

- Individual external connection boxes
- TEDS for PR sensors
- Sensor identification module

CS18 Optional Extra Sensor SUPPLY internal

Applications

 Provides proper connection of several kinds of sensors to a voltage input of a measurement device (here: CS18 VCU). Sensor is plugged in at input. Signal output is connected to CS18 VCU input. Provides DC supply voltage(s) for sensor and performs signal preconditioning

Range of Use

- Certified Calibration laboratories
- Departments of measuring instrument verification in research, development and industry, particularly in automotive crash test laboratories
- Quality assurance in the sensor manufacturing

- Supply of typical supply voltage for sensors
- short-circuit-proof power supply
- **Pre-conditioning** of the sensor output signal
- Impedance converter
- Optional DC reject high pass 0.01 Hz
- Custom made design for several types of sensor

Components

- Plug-in module for CS18 vibration control system SRS-35, SPEKTRA
- Sensor In socket, Signal Out socket, Indicator LEDs

Sensor supply		
Voltage Range	Unipolar:	+15 V _{DC} , +/- 2% (Type D,P,K)
		or custom made + 5 V_{DC} + 15 V_{DC}
	Bipolar:	+15 V_{DC} , -15 V_{DC} ,+/- 2% (Type E)
		or custom made +/- 5 V_{DC} +/- 15 V_{DC}
Current	max. 100 mA (polyfus	se-protected)
Options and Parameters		
Balanced differential input	Gain (0 - 5 kHz):	1 +/- 0.02%
(Type D, E, K)	Gain (0 - 10 kHz):	1 +/- 0.05%
	Gain (0 - 20 kHz):	1 +/- 0.2%
	Gain (0 - 50 kHz):	1 +/- 1% (Uimax=1 V)
	Signal Delay:	0.4 μs (typical) (<=20 kHz; 20 50 kHz, 1V)
	Voltage range:	+/-10 V _{peak}
Grounded input	Gain (0 - 10 kHz):	1 +/- 0.02%
(Type P)	Gain (0 - 50 kHz):	1 +/- 0.1%
	Signal Delay:	0.2 µs (typical)
	Voltage range:	+/-10 V _{peak}
Common	Input impedance	10 MOhm
Sample sensors	Type P (+15 V _{DC}):	PCB 3701_ (grounded input)
	Type D (+15 V_{DC}):	Dytran 7500A_ (differential input)
	Type K (+15 V _{DC}):	Kistler 83_ (differential input)
	Type E (+15 V _{DC}):	Endevco 7290A (differential input)

Optional extras for the sensor supply

- 1 to 4 channels
- Individual customer-specific connectors and connector pin assignments
- Customized sensor supply voltage(s)

Also available as VCU plug in module "Sensor SUPPLY external" See also PR-Module for bridged piezo resistive sensors

CS18 Optional Extra Sensor SUPPLY external

Description

While ICP (IEPE) and charge type sensors can be directly connected to the input of the CS 18 vibration control unit (VCU), other types of sensors like capacitive or bridge type sensors need their own power supply and signal preconditioning. The external power supply adapts those sensors to the CS18 and other measurement devices. It provides a power supply of one or two voltages, performs an impedance conversion, changes a differential to an unipolar signal and optionally removes a DC (e.g. caused by gravitation) from the signal.

The sensor is plugged into the input and the ready made signal comes out at the output. As there are many different kinds of sensors, which need different conditions and options, SPEKTRA offers custom made versions of sensor supply for most common sensors. Because also the pin assignment of the sensor plug may be different, several wiring adaptors can be provided on request.

Applications

 Provides proper connection of several kinds of sensors to a voltage input of a measurement device (here: CS18 VCU). Sensor is plugged in at input. Signal output is connected to CS18 VCU input. Provides DC supply voltage(s) for sensor and performs signal preconditioning

Range of Use

- Certified Calibration laboratories
- Departments of measuring instrument verification in research, development and industry, particularly in automotive crash test laboratories
- Quality assurance in the sensor manufacturing

- Supply of typical supply voltage for sensors
- short-circuit-proof power supply
- Pre-conditioning of the sensor output signal
- Impedance converter
- Optional DC reject high pass 0.01 Hz
- Custom made design for several types of sensor

CS18 Optional Extra

Sensor SUPPLY external

Components

- Sensor supply box in a small metal case.
- Sensor In socket, Signal Out socket, Indicator LEDs
- Wide range mains power supply

Sensor supply		
Voltage Range	Unipolar:	+17 V _{DC} , +/- 2% (Type D,P,K)
		or custom made + 5 V_{DC} + 17 V_{DC}
	Bipolar:	+17 $V_{\text{DC}},$ -13 $V_{\text{DC}},\text{+/-}$ 2% (Type E)
		or custom made +/- 5 V_{DC} +/- 15 V_{DC}
Current	max. 100 mA (polyfu	se-protected)
Options and Parameters		
Balanced differential input	Gain (0 - 5 kHz):	1 +/- 0.02%
(Type D, E, K)	Gain (0 - 10 kHz):	1 +/- 0.05%
	Gain (0 - 20 kHz):	1 +/- 0.2%
	Gain (0 - 50 kHz):	1 +/- 1% (Uimax=1 V)
	Signal Delay:	0.4 μs (typical) (<=20 kHz; 20 50 kHz, 1V)
	Voltage range:	+/-10 V _{peak}
Grounded input	Gain (0 - 10 kHz):	1 +/- 0.02%
(Туре Р)	Gain (0 - 50 kHz):	1 +/- 0.1%
	Signal Delay:	0.2 μs (typical)
	Voltage range:	+/-10 V _{peak}
Common	Input impedance	10 MOhm
Sample sensors	Type P (+17 V _{DC}):	PCB 3701_ (grounded input)
	Type D (+17 V_{DC}):	Dytran 7500A_ (differential input)
	Туре К (+17 V _{DC}):	Kistler 83_ (differential input)
	Type E (+17 V _{DC}):	Endevco 7290A (differential input)

Optional extras for the sensor supply

- Individual customer-specific connectors and connector pin assignments
- Customized sensor supply voltage(s)
- High pass 0.01 Hz

Also available as VCU plug in module "Sensor SUPPLY internal" See also PR-Module for bridged piezo resistive sensors

CS18 Optional Extra TRANS for CS18 VLF (primary and secondary)

Application

Type CS18 TRANS is the practical implementation of a system for determining the transversal transfer coefficient as a function of operating angle according to ISO 16063-31.

In this system, the angular actuator is remotecontrolled by a step motor. Thus the measurement of $S_{\rm T}(\varphi, f)$ as a function of angle and frequency can be carried out all-automatically.

Features

Excitation in transversal direction is accomplished by means of an air bearing slide table. As a result, both frequency and vibration amplitude (acceleration or displacement) can be set at will or varied continuously within certain limits.

The system is offered under the trade name CS18 TRANS as an optional extra to a type CS18 VLF Calibration system. It is intended for operation in conjunction with an APS 129 or APS 500 air bearing long-stroke vibration exciter in the frequency range between 2 Hz and 50 Hz.

- Due to its step motor, rotation can be controlled precisely in steps, but also continuously.
- Extremely low interferences, e.g. transverse vibrations due to the minor mass of construction

CS18 Optional Extra

TRANS for CS18 VLF (primary and secondary)

Components

- · Precision board to mount the angular actuator
- Angular actuator with sensor-mounting board
- Position control for the angular actuator
- Operation mode "Measurement of transverse sensitivity" for CS18 Software
- Reference standard ATS-7 for installation and periodic verification of angular actuator

Specifications

Measuring device for determining the transverse sensitivity according to ISO 16063-31

Given that the transverse sensitivity of exciter is < 0.1 % in direction of main sensitivity of DUT, the following measurement uncertainties apply:

Frequency Range		Weight of DUT ³⁾	Expanded Measurement Uncertainty ¹⁾ Relative Transverse Sensitivity ²⁾	PEAK-Acceleration in m/s ²	
from	to	up to		min.	max.
2 Hz	25 Hz	200 gram	0.3 %	4	2 - 10
> 25 Hz	50 Hz	50 gram	0.5 %		10

¹⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement) with k = 2 (coverage factor)

²⁾ Reference value for interval width of given <u>relative</u> Measurement Uncertainty (e.g. 0.3%) is not the measurement value, as usual (in this case the relative transverse sensitivity), but the dynamic sensitivity of the DUT in direction of main sensitivity at same frequency.

³⁾ Higher weight of DUT possible on demand

The following figures show different illustrations of the relative transverse sensitivity.

* Areas that contain optional accessories (in addition to the standard version) are marked red

Application

For the effective calibration of accelerometers in the laboratory, it is necessary to have an assortment of standard accessories. This assortment is supplied with the accessories case CS18 ZK.

This case contains all important accessories that you may need for the calibration of accelerometers of most of the well-known manufacturers (like Endevco, Brüel & Kjaer, Metra, Kistler, PCB or Dytran). This applies as well for sine calibration systems as for all shock calibration systems except for the CS18 HS for which we offer a separate accessories case.

The accessories case CS18 ZK-STD includes amongst other things:

- Different relevant thread adapters needed for attaching a device under test to a back-to-back sensor or calibration exciter as well as the relevant wrenches for doing so Moreover the bag contains the means and aids for attaching a device to the reference sensor etc. other than by screwing and means for fastening the sensor cable as well as equipment to avoid damages.
- Sensor cables, cable adaptors and cable mounting clips
- Screw tap and sliding caliper
- Necessary devices needed for a thorough calibration

CS18 ZK-STD

Accessories Case for Calibration Systems

Components of the SPEKTRA Calibration-Accessories Case:

Pos.	Quantity	Name
1	1	Accessories case
		Accessories for the mechanical mounting of sensors
2	19	Diverse mounting bolts, threads, Allen wrench (metric / imperial)
3	1	Special adapter for assembling PR sensors such as Endevco 7264C
4	1	Torque wrench up to max. 4 Nm
5	7	Special nuts for Torque wrench sizes: 9/32", 1/2", 3/4", 1-3/16", 16 mm, 17 mm , 22 mm
6	3	Duple wrenches acc. DIN 3110; sizes: 16/17", 18/19", 30/32"
7	2	Combination wrenches acc. DIN 3113; sizes: 3/4", 1-3/16"
Accessories for the electrical connection of sensors		
8	9	Diverse BNC-Adapter, Couplings, T-connectors, BNC-plug \leftrightarrow banana plug and jack
9	2	Adapter: Microdot \leftrightarrow BNC, Microdot \leftrightarrow TNC
10	1	Sensor cable; Microdot ↔ Microdot (1.5 m)
11	1	Sensor cable; Microdot \leftrightarrow BNC (1.5 m)
12	1	Sensor cable; Microdot \leftrightarrow TNC (1.5 m)
		Additional additives
13	1	Adapter plate with adapters and test threads, metric and imperial
14	2	Screwdriver
15	1	Screw tap acc. DIN 371, 10-32 UNF
16	1	Sliding caliper
17	1	Cutting knife
18	6	Additives: super glue, wax, acetone, duct tape, Vaseline
19	various	Useful small parts for mounting cables and sensors

Pos.	Quantity	Name		
	Version 1 - Optional Accessories			
20	1	SAM-066		
21	2	Threaded rod 10-32 x 120		
22	4	Screw nut 10-32		
23	1	Spanner 3/8"		
	Version 2 - Optional Accessories			
22	1	SAE-102		
23	2	Adapter, Screws 0-80		
	Version 3 - Optional Accessories			
24	1	Temperature– and Moisture meter		

Application

For the effective calibration of accelerometers in the laboratory, it is necessary to have an assortment of standard accessories. This assortment will be supplied with the accessories case CS18 ZK-HOP.

This bag is containing all important accessories which you may need for the calibration of Shock accelerometers.

The accessories case CS18°ZK-HOP amongst other things contains:

- Replacement projectiles for the HOP-HS
- Tools to replace the projektils
- Tools to attach and remove shock sensors
- Sensor cables, extending cables, cable adaptors, cable connectors, and cable mounting clips
- Hearing Protections
- Necessary devices for a correct calibration work

Components of the SPEKTRA Calibration-Accessories Case:

Pos.	Quantity	Name		
1	1	Accessories case		
	Accessories for Maintenance			
2	10	Projectiles		
3	1	L-Key Hex 5 mm		
4	1	Wrench DIN 3113, 13 mm		
Accessories for the electrical connection of sensors				
5	5	Diverse BNC-Adapter, Couplings, T-connectors		
6	2	Adapter: Microdot ↔ BNC, Microdot – TNC		
7	2	Adapter: TNC-Male ↔ BNC-Female, TNC-Female – BNC-Male		
8	1	Sensor cable; Microdot ↔ Microdot (1.5 m)		
9	1	Sensor cable; Microdot \leftrightarrow BNC (1.5 m)		
10	1	Sensor cable; Microdot \leftrightarrow TNC (1.5 m)		
		Additional additives		
11	1	Cutting Knife		
12	3	Glue, Mounting Wax, Acetone, Labels		
13	Div.	Useful parts for mounting sensors and cables		
14	Set	Earplugs		
15	1	Earmuff		

Application

- Quick, simple and mobile in-field inspection/ calibration of vibration transducers
- Easy in-field inspection of sensor wirings of machines
- Quick and easy error search on vibration measurement chains of machines

Application Fields

- Calibration laboratories
- All industrial branches
- Engineering offices
- Educational institutions

- Including international recognized DAkkScalibration certificate
- 16 mm diameter of the coupling area for an optimal linkage of the DUT
- Sensor mounting with 1/4" 28 thread
- Suitable for DUT masses up to 150gram
- Tare weight of 950gram allows a very reliable calibration because of the high reaction mass
- · Very easy to use
- Automated switch-off after 60s and manual adjustable continuous operation
- Rugged calibrator housing for highest reliability
- Practical, ruggedized transportation case
- Included accessory:
 - Mounting Stud 1/4-28 to 1/4-28
 - Mounting Stud 1/4-28 to 10-32
 - Adhesive Mounting Base 1/4-28 to Hex 3/4"
 - 8 batteries
- Comprehensive accessory optional available (check accessory list)

Calibrator CV-01 Handheld Shaker

Description

The handheld shaker CV-01 is a high quality measurement device from SPEKTRA. Its technical details like the large coupling area and the rough housing are featuring this calibrator as well as its extensive accessory. The well balanced reaction mass leads to a good mass ratio to the weight of the DUT whereby up to 150 g heavy transducers can be reliably tested. Nevertheless the calibrator is still quite handy. That allows a very wide range of applications.

The voltage supply is ensured by 4 AA batteries. The calibrator as well as its complete accessory is delivered in a practical and ruggedized transportation case. In addition each calibrator is calibrated by SPEKTRA before its delivery and gets an internationally recognized DAkkS calibration certificate.

Frequency	159,15 Hz ±0,02%	1000 rad/s ±0,02%	
Acceleration	10 m/s² ±2%	1,02 g ±2%	
Velocity	10 mm/s ±2%	0,39 in/s ±2%	
Displacement	10 µm ±2%	0,39 mil ±2%	
Temperature range	-10 °C+55 °C	15 °F130 °F	
Max. Payload	150 g	5,3 oz	
Max. Torque for mounting of transducers	0,5 Nm	4,4 lbf in	
Diameter of the coupling area	16 mm	0,63 in	
Length of the calibrator	180 mm	7,1 in	
Diameter of the calibrator	58 mm	2,3 in	
Weight of the calibrator	950 g	33,5 oz	
Dimensions of transport case	240 mm x 280 mm x 105 mm (LxWxH)	9,5 in x 11 in x 4,1 in (LxWxH)	
Transverse amplitude	<5% of main a	axis amplitude	
Distortion	<3	%	
Signal duration	60 s (Automatic switch-off), continious operation (manual selectable)		
Warm-up time	5 s		
Mounting thread	1/4"-28 UNF		
Power supply	4x Mignon (AA) - Batteries		

Technical Data:

Calibrator CV-01 Handheld Shaker

Page 3 of 3

Optional Accessory:

Order Code	Description
V081070002	Adhesive Mounting Base Hex 3/4"
V081070003	Adhesive Mounting Base Hex 1-3/16"
V081070004	Mounting Stud 1/4-28 to 10-32
V081070005	Mounting Stud 1/4-28 to 1/4-28
V081070006	Mounting Stud 1/4-28 to M5
V081070008	Mounting Stud 1/4-28 to M6
V081070031	Mounting Stud 1/4-28 to M8
V081070044	Mounting Stud 1/4-28 to 5-40
V081070046	Mounting Stud 1/4-28 to M3
V081070020	Mounting Adapter 1/4-28 to M2,5 (F) - Hex 3/4"
V081070021	Mounting Adapter 1/4-28 to M3 (F) - Hex 3/4"
V081070022	Mounting Adapter 1/4-28 to M4 (F) - Hex 3/4"
V081070023	Mounting Adapter 1/4-28 to 2-56 (F) - Hex 3/4"
V081070024	Mounting Adapter 1/4-28 to 5-40 (F) - Hex 3/4"
V081070025	Mounting Adapter 1/4-28 to 10-32 (F) - Hex 3/4"
V081070026	Mounting Adapter 1/4-28 to M5 (F) - Hex 3/4"
V081070028	Mounting Adapter 1/4-28 to M6(F) - Hex 3/4"
V081070032	Bushing 1/4-28 to M2,5
V081070033	Bushing 1/4-28 to M3
V081070034	Bushing 1/4-28 to M4
V081070036	Bushing 1/4-28 to 2-56
V081070037	Bushing 1/4-28 to 5-40
V081070038	Bushing 1/4-28 to 6-32
V081070039	Bushing 1/4-28 to 10-32
V081079004	Mounting Adapter 1/4-28 to M2,5 (M) - Hex 3/4"
V081079005	Mounting Adapter 1/4-28 to M3 (M) - Hex 3/4"
V081079006	Mounting Adapter 1/4-28 to M4 (M) - Hex 3/4"
V081079007	Mounting Adapter 1/4-28 to 2-56 (M) - Hex 3/4"
V081079008	Mounting Adapter 1/4-28 to 5-40 (M) - Hex 3/4"
V50300001	Sensor Cable Microdot - Microdot 1,5m; also available in 3m and 5m
V50300007	Sensor Cable Microdot - BNC 1,5m; also available in 3m and 5m
V50300017	Sensor Cable Microdot - TNC 1,5m; also available in 3m and 5m

Cable adapters and customized mounting adapters on request.

Application

- Pressure chamber **secondary calibration** of microphones according to **IEC 61094-5**
- Pressure chamber **secondary calibration** of sound level meters and sound level measuring chains according to **IEC 61672**

Range of Use

- Certified calibration laboratories
- Departments of **measuring instrument verification** in research and industry, for example test laboratories in the automotive field or in the aviation and space industry
- Quality assurance in manufacturing of microphones, sound level meters and dosimeters

Advantages

- Wide frequency range 31.5 Hz ... 16 kHz
- Low distortion, even at low frequencies
- High sound pressure level up to 124 dB
- Symmetric very small pressure chamber

- True **pressure chamber calibration** with an acoustic coupler
- Calibration of measuring microphones (capacitor and electrets microphones in the sizes 1/2" and with adapter 1/4")
- **Supply** of a sound pressure level for the calibration of sound level meters and measuring chains
- Frequency range SQ-4.2, ½": 31.5 Hz ... 16 kHz
- Sound pressure level 64 dB ... 124 dB
- Including Microphone fixture unit
- Including High-End Power Amplifier
- **On request**: solution for 1^{''} microphones available

SQ-4.2 Electro-Acoustic Coupler

System components

- SQ 4.2 active electro-acoustic coupler
- Microphone holder fixture
- High-End Power amplifier
- System cable

Optional reference standards (recommended):

- 1/2" condenser microphone cartridge type LS2P or WS2P with amplifier
- LS-Adapter (open grid for WS2P Microphone)

Optional calibration adapter:

- Calibration adapter for surface microphones
- Calibration adapter for ear simulators

Soundfield:	Pressure	chamber
Frequency range:	31.5 Hz	. 16 kHz
Maximum electrical power of the sound source:	0.5	W
Distortion factor at 94 dB (31,5 Hz 1 kHz):	< 3% (THD)
Stability at 94 dB:	< 0.2	dB
Diameter of Microphones	1/2" and with a	adapter 1/4"
Maximum sound pressure level:	31.5 Hz < 63 Hz 63 Hz < 250 Hz 250 Hz 1.6 kHz > 1.6 kHz 6.3 kHz > 6.3 kHz 16 kHz	104 dB 114 dB 124 dB 104 dB 74 dB

Typical measurement uncertainty of a microphone calibration with LS2P:

- For environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

- Measurement uncertainties determined with SPEKTRA calibration system CS18 SPL

Calibration Method		Comparison ca	libration
Sound pressure level		94 dB ²⁾ up to	6.3 kHz
Typical expanded Uncertainty Frequency Range ¹⁾ Measuring Microphones with Diameter ½" Sound Level Meters and Sound Level Measuring Chains	31.5 Hz 5 kHz	0.20 dB	
	> 5 Hz 10 kHz	0.25 dB	
	> 10 kHz 16 kHz	0.50 dB	

¹⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor)

²⁾ 94 dB sound pressure level is preferred. Stated values of expanded uncertainty apply to this level.

Application

- Primary calibration of vibration sensors according to ISO 16063-11
- Secondary calibration of vibration sensors, calibrators and meters with very high quality and performance according to ISO 16063-21 (comparison calibration)
- Calibration of reference standard transducers
- Resonance frequency search up to 50 kHz
- Testing of micro-mechanic sensors (MEMS)

Range of use

- Accredited calibration laboratories with outstanding quality demands
- Departments of measuring instrument verification in **research and industry**
- Quality assurance in sensor manufacturing
- National Metrological Institutes as highest metrological authorities (in combination with CS18P)

Features

- Air bearing with ceramic armature
- Very high first axial head resonance frequency (> 52 kHz)
- Very high acceleration amplitudes (up to 40 g_n)
- Insignificant Transverse motions according to ISO 16063-21
- Usable frequency range up to 50 kHz
- Usable displacement 8 mm (pk-pk)
- Maximum mass of DUT 350 gram
- Extreme wear resistant ceramic armature with defined small electrical conductivity (ESD characteristics)
- Internal high frequency reference accelerometer (ICP[®]-type, sensitivity about 10 mV / g_n)

Description

The SE-09 is a high-tech product, which is the result of extensive theoretical and practical examinations. It is designed specially for the usage in calibration laboratories and in national institutes. A significant result of this examinations is the appearance of the first axial head resonance above 52 kHz. In combination with the used internal reference standard accelerometer a true usable frequency range of 50 kHz appears.

SE-09 Calibration Vibration Exciter for High Frequencies

The drive of the shaker is electro dynamic. All components of the drive are designed for high performance. With acceptable temperature rise of the shaker, high acceleration amplitudes can be created.

Low transverse motions on a defined small mechanical base noise can be reached because of specially designed air bearings. Because of the application of top performance materials (armature made from technical ceramic, drive with high-performance magnets) and the optimized form of construction the shaker has a very high power density. The result is a lightweight shaker with small dimensions.

In combination with a reference laser vibrometer – instead of the internal reference accelerometer – the shaker can be used for class 1 primary vibration calibration systems like the CS18P HF

Components

- Internal reference accelerometer, HF- quartz shear ICP® accelerometer
- Basis mass
- Cable holder

Technical Data

Vibration Exciter		
Force Rating ^{1) 2)}	100 N	
Frequency Range	5 Hz 50.000 Hz	
Resonance Frequency	> 52 kHz	
Max. Stroke (peak-peak) ^{1) 2)}	8 mm	
Max. Velocity	0.5 m/s	
Max. Acceleration ^{1) 2)}	40 g _n	
Max. Payload	350 gram	
Transverse Motion	typical 5 Hz10 kHz, < 5 %; 10 k	Hz50 kHz < 10 %
Max. Current Input	9 A rms	
Air Pressure Required	1 bar 4 bar; typ. 2 bar	
Total Weight	ca. 7 kg	
Working Temperature Range	23°C (± 2 K)	73.4°F (± 2 K)
Storage Temperature Range	-25°C bis +55°C	-13°F +131°F
Data of the Internal Reference Accelerometer ^{1) 3)}		
Sensitivity (± 10 %)	1 mV / m/s² (10 mV / <i>g</i> _n)	
Frequency Range	3 Hz 50 kHz	
Amplitude Linearity	< 0,25%	
Resonance Frequency	ca. 70 kHz	
Excitation Voltage	18 V _{DC} 30 V _{DC}	
Constant Current Excitation	2 mA 20 mA	
Output Bias Voltage	8 V _{DC} 12 V _{DC}	
Discharge Time Constant	0.5 sec 2.0 sec	
Settling Time (Within 10% of Bias)	< 5 sec	
Connectors		
Sensor	Cable 2 m with BNC plug 10-32 f	ixed connected
Shaker	Cable 3 m with Speakon [®] plug	

¹⁾ Interval mode of operation

²⁾ Recommended operation range; mechanical stop at 10 mm

³⁾ All specifications are at room temperature unless otherwise specified.

Recommended Power Amplifier: PA 14-500

Recommended optional extra: Remote shut-down

Application

- Vibration testing in research and development
- Modal analysis / Excitation of structures
- Calibration of vibration sensors, motion transducers and calibrators
- Quality Assurance in sensor manufacturing
- Educational demonstrations

- Light-weight aluminum armature with rugged stainless steel table surface
- Efficient electro-dynamic drive
- Guidance system with low transverse motions (according to ISO 16063-21)
- Force Rating 100 N
- Usable Frequency Range DC up to 10 kHz
- High first axial Resonance Frequency (> 12 kHz)
- High acceleration amplitudes (up to 60 g_n)
- Effective displacement 10 mm (0.39 in pk-pk)

SE-10 Vibration Exciter

Page 2 of 3

Description

The vibration exciter SE-10 with a flexural guidance system is a high-tech product that is a reliable tool for vibration testing in research and development as well as for daily use in calibration laboratories.

A force rating of 100 N and the high acceleration amplitudes of up to 60 g_n allow for a wide range of applications in vibration tests.

The rugged design, light armature and well-aligned guidance system (with low transverse motions, high radial and low axial stiffness) make the SE-10 a very good choice for the excitation of structures in modal testing.

Users of the SE-10 in calibration laboratories appreciate the faster calibration cycle times with low measurement uncertainties in the frequency range of 3 Hz to 10 kHz - made possible by the optional internal reference standard accelerometer.

Performance

The possible performance charts for vibration measurements with different payloads are exemplified in the following diagram.

ACCELERATION WITH VARIOUS MASS LOADS

Option: Trunnion

for angular operation

Page 3 of 3

Technical Data

Vibration Exciter		
Force Rating ¹⁾	100 N (22 lbf)	
Frequency Range	DC (3 Hz) ⁴⁾ 10 kHz	
Axial Resonance Frequency	> 12 kHz	
Max. Stroke ²⁾	10 mm (0.39 in)	
Max. Velocity	1,5 m/s (59 in/s)	
Max. Acceleration ¹⁾	600 m/s² (60 g _n)	
Moving Element Weight	165 gram (0.36 lb)	
Max. Payload	500 gram (1.10 lb)	
Transverse Motion	typical 3 Hz7 kHz, < 10 %; 7 kHz10 kHz, < 25 %	
Max. Current Input 1)	13 A rms	
Total Weight	9,5 kg (21 lb)	
Working Temperature Range	5°C +40°C (41°F 104°F)	
Storage Temperature Range	-25°C +55°C (13°F 131°F)	
Connectors		
Vibration Exciter	8-pin Speakon [®]	
Sensor ⁴⁾	BNC	

Options and Accessories

Internal Reference Standard BN-09 ³⁾	
Sensitivity (± 10 %)	1 mV / m/s² (10 mV / g _n)
Frequency Range	3 Hz 50 kHz
Resonance Frequency	approx. 70 kHz
Excitation Voltage	18 V _{DC} 30 V _{DC}
Constant Current Excitation	2 mA 20 mA
Output Bias Voltage	8 V _{DC} 12 V _{DC}
Discharge Time Constant	0,5 s 2,0 s
Settling Time (Within 10 % of Bias)	< 5 s
Amplifier PA 14-180	
Handles	
Trunnion	0° - 90°

¹⁾ Interval mode of operation

 $^{\rm 2)}$ Recommended operation range; mechanical stops at 12 mm (0.47 in)

³⁾ All specification are at room temperature unless otherwise specified

⁴⁾ With the optional internal reference standard accelerometer

Application

• Cross sensitivity testing of small components or sensor with true monoaxial excitation

Range of use

- Development and Test of MEMS Sensors
- Quality assurence in sensor manufacturing

Features

- Ceramic armature with coupling surfaces on the side
- Very high first axial head resonance frequency (> 52 kHz)
- high acceleration amplitude (up to 400 m/s²)
- Very low cross motion typical < 10 % ³⁾
- Usable frequency range from 2 kHz to 50 kHz
- Extreme wear resistant ceramic armature
- Internal high frequency reference accelerometer (ICP[®]-type, sensitivity about 10 mV / g_n)

Description

The SE-11 is a high-tech product, specially designed for cross sensitivity testing of small components or sensors. The DUT can be fixed on the side of the armature. Due to the special design of the armature the DUT can be excited with nearly no cross motion ³⁾ in the frequency range between 2 kHz and 50 kHz. The drive of the shaker is electro dynamic. All components of the drive are designed for high performance. With acceptable temperature rise of the shaker, high acceleration amplitudes can be created.

Because of the application of top performance materials (armature made from technical ceramic, drive with high-performance magnets) and the optimized form of construction the shaker has a very high power density. The result is a lightweight shaker with small dimensions.

Technical Data

Components

• Internal reference accelerometer

· Basis mass

Vibration Exciter		
Force Rating ^{1) 2)}	100 N peak	
Frequency Range	1 kHz 50 kHz	
Resonance Frequency	> 52 kHz	
Max. Stroke ^{1) 2)}	20 µm	
Max. Acceleration ^{1) 2)}	400 m/s ² peak	
Max. Payload	10 gram	
Transverse Motion ³⁾	typical less than 10 % between 2 kHz50 kHz	
Max. Current Input	9 A rms	
Total Weight	9 kg	
Working Temperature Range	23°C (± 2 °C)	73.4°F (± 4 °F)
Storage Temperature Range	-25°C +55°C	-13°F +131°F
Data of the Internal Reference Accelerometer ²⁾		
Sensitivity (± 10 %)	1 mV / m/s² (10 mV / g _n)	
Frequency Range	2 Hz 50 kHz	
Amplitude Linearity	< 0,25%	
Resonance Frequency	ca. 70 kHz	
Excitation Voltage	$18 V_{DC} \dots 30 V_{DC}$	
Constant Current Excitation	2 mA 20 mA	
Output Bias Voltage	8 V _{DC} 12 V _{DC}	
Discharge Time Constant	0.5 sec 2.0 sec	
Settling Time (Within 10% of Bias)	< 5 sec	
Connectors		
Sensor	Cable 3 m with BNC plug 10-3	32 fixed connected
Shaker	Cable 3 m with Speakon [®] plug)

¹⁾ Interval mode of operation

 $^{\rm 2)}$ All specifications are at room temperature unless otherwise specified

³⁾ Bending vibration at 43 kHz, higher transverse motion

Recommended Power Amplifier: PA 14-500

Patent pending

The **SE-13** Air Bearing shaker is an electrodynamic force generator specifically designed to be used for calibration and evaluation of accelerometers and other motion transducers in vertical direction. It provides excellent properties for low frequency excitation of such devices. The model consists of a large air bearing load mounting table that allows high payloads up to 50 kg (110 lb) e.g. for the calibration of geophones and heavy seismic sensors.

Applications

- Primary Calibration (according to ISO 16063-11) of low frequency accelerometers
- Secondary Calibration (according to ISO 16063-21) of low frequency accelerometers
- Seismic simulation of components
- Calibration of reference sensors

Typical DUT

- Heavy seismic sensors (seismometers, geophones)
- Sensors for measurement of vibration immission (DIN 45669)

- 500 N force ¹⁾
- Frequency range: DC ... 400 Hz
- Unique frictionless support system carries up to 50 kg (110 lb) test load
- Efficient electrodynamic drive for sine, random or transient signals
- Air bearing guidance provides excellent waveform purity
- Very low cross motion according to ISO 16063-21
- Large mounting surface: Ø 350 mm

SE-13 Calibration Vibration Exciter for Low Frequencies

Technical Data

Vibration Exciter	
Force Rating ^{1) 2)}	500 N
Frequency Range	DC (0.2 Hz) ³⁾ 400 Hz
Max. Stroke ³⁾	25 mm
Max. Velocity ¹⁾	300 mm/s
Max. Acceleration ^{1) 2)}	60 m/s² peak
Max. Current Input ²⁾	9 A rms
Operation	vertical
Moving Element Weight	8 kg
Max. Payload	50 kg (110 lb)
Table Size	Ø 350 mm
Air Pressure Required	4.0 5.0 bar
Air Flow Required	800 l/h (0.48 cfm)
Air Quality	ISO 8573.1 Class 3
Total Weight	70 kg
Working Temperature	23°C (± 2 K)
Storage Temperature	-25°C +55°C
Connectors	
Vibration Exciter: drive	8-pin Speakon [®] plug
Vibration Exciter: compressed air	Air pipe Ø 6 mm
Attachment of Device under Test (DUT)	Thread holes M6 on 100 mm centers

¹⁾ Peak sine

²⁾ Interval mode of operation

³⁾ Recommended operation range peak-peak; mechanical stop at 32 mm (1.3 in)

⁴⁾ With the optional internal reference standard accelerometer

Accessories

Recommended power amplifier	APS 125
Standard mechanical adapter (incl. magnetic field shield)	V081100001
Customized mechanical adapter	On request

SE-13 Calibration Vibration Exciter for Low Frequencies

Performance

Test loads of up to 50 kg (110 lb) can be driven to velocity levels typical of those found in seismic specifications. Performance envelopes of the SE-13 shaker are given in the graphs below. These envelopes represent the maximum velocity and acceleration for various test loads that can be achieved on the table.

Application example: Calibration of a typical seismic sensor using the SE-13:

Seismowave CP ZM-500: 11 kg, 0.1...100 Hz

Typical Applications

- Vibration testing in research and development
- Calibration of acceleration and velocity sensors (e.g. sensors for machine diagnostics)
- Modal testing / Excitation of structures
- Quality assurance in sensor manufacturing
- Educational demonstrations

- Wide frequency range 0 Hz ... 8 kHz
- High acceleration amplitudes up to 500 m/s²
- Steel-aluminum-ceramics compound armature
- Rugged steel table surface
- High first axial resonance at 9 kHz
- Low temperature increase of exciter table
- Stray magnetic field at table surface < 1 mT
- Max. payload (vertical / horizontal): 2 kg / 1 kg
- Displacement 20 mm (Peak Peak)
- Internal reference standard (optional)
- Current and voltage monitor output
- Amplifier state outputs for integration in testing systems

SE-14 Vibration Exciter

Page 2 of 4

Description

The SE-14 is a high-tech product that is a reliable tool for vibration testing in research and development as well as for daily use in calibration laboratories. It was especially designed to test and calibrate heavier acceleration and velocity sensors (e.g. sensors for machine diagnostics) over a wide frequency range. Its flexural guidance system perfectly supports sensors with an asymmetric housing or with heavy and stiff cables. without a loss in signal quality. High acceleration amplitudes of up to 500 m/s² and a payload capacity of up to 2 kilograms allow for a wide range of applications in vibration tests as well.

Regarding calibration, the SE-14 comes up with two features which will set a new standard for the calibration quality:

- The vibration exciter armature is made from a compound of ceramics aluminum and steel, minimizing the heat transfer from the driving coil to the exciter's table surface. During a calibration run or vibration test even at higher levels, there will be no significant temperature rise on the table surface.
- The vibration exciter housing consists of a magnetic shielding, which keeps the stray magnetic field from the permanent magnet system inside of the housing. As a result, the stray magnetic field on top of the table is less than 1 mT. Especially velocity sensors, using an electrodynamic principle, will not be affected from the stray magnetic field during the calibration.

Users of the SE-14 in calibration laboratories also appreciate the faster calibration cycle times with low measurement uncertainties in the frequency range of 3 Hz to 8 kHz - made possible by the optional internal reference standard accelerometer.

Useful safety functions (e.g. temperature/current and over travel control) are already integrated and are visualized on the amplifier's multi function display.

Performance

The possible performance charts for vibration measurements with different payloads are exemplified in the following diagram. Those performance charts are based on operation of the SE-14 with its recommended power amplifier APS 145.

ACCELERATION WITH VARIOUS PAYLOADS

Page 3 to 4

Technical Data

Vibration Exciter ¹⁾		
Force Rating ²⁾	80 N (0 Hz to 0.1 Hz)	
	265 N (above 0.1 Hz)	
Frequency Range	0 Hz 8 kHz	
Axial Resonance Frequency	Bare table: 9 kHz	
	With 300 g payload: > 8 kHz	
Max. Stroke ³⁾	20 mm	
Max. Velocity	1.2 m/s	
Max. Acceleration ²⁾	500 m/s ²	
Moving Element Weight	1,3 kg	
Max. Payload (vertical / horizontal)	2 kg / 1 kg (more load possible on request)	
Transverse Motion (typical)	< 4 kHz: < 10 %	
	4 kHz 8 kHz: < 20 %	
Rated Current ²⁾	13 A rms	
Stray Magnetic Field	< 1.2 mT on vibration exciter table	
Table Size	Ø 65 mm (customization on request)	
Dimensions (H x W x L) ⁴⁾	270 x 320 x 320 mm	
Weight	45 kg	
Carrying Handles (removable)	2	
Working Temperature Range	5°C 40°C	
Storage Temperature Range	-25°C 55°C	
Recommended Power Amplifier APS 145		
Max. Voltage Output	45 V RMS, 0 Hz 15 kHz	
Monitor Output	Voltage monitor: 0.1 V/V	
	Current monitor: 0.1 V/A	
Power Requirements	Single phase 100 V / 120 V / 230 V RMS, ± 10 %,	
	approx 1 500 VA at full load	
Dimension (H x W x L)	132 (3 U) x 483 x 451 mm	
	prepared for rack mounting	
Weight	22 kg	
System Cable 0082-6E		
Length	6 m	
Connector	8-pin Speakon [®]	

All specification are at room temperature unless otherwise specified

¹⁾ All specification are based on operation of the vibration exciter with its recommended power amplifier

²⁾ Continuous duty

³⁾ Recommended operation range peak-peak; mechanical stops at 22 mm

⁴⁾ without carrying handles

Page 4 of 4

Options and Accessories

Internal Reference Standard BN-09 (optional)	
Sensitivity (± 10 %)	1 mV / m/s² (10 mV / g _n)
Frequency Range (with SE-14)	3 Hz 50 kHz
Resonance Frequency	approx. 70 kHz
Excitation Voltage	18 V _{DC} 30 V _{DC}
Constant Current Excitation	2 mA 20 mA
Output Bias Voltage	8 V _{DC} 12 V _{DC}
Discharge Time Constant	0.5 s 2.0 s
Settling Time (Within 10 % of Bias)	< 5 s
Connector	BNC Jack on vibration exciter housing
Accessories	
Trunnion Base	08504-0001

All specification are at room temperature unless otherwise specified

Trunnion Base

When choosing the best shaker location for tests, the Trunnion Base allows the shaker to be set up in a wide tilt angle range.

Additional adjustable stops at 0° and 90° allow for a quick and easy change between vertical and horizontal operation with good repeatability. Especially for calibration laboratories this can be a useful feature.

All data are subject to change without notice

November 2016

Application

• High-frequency vibration excitation of small components and sensors in the longitudinal and transverse direction

Range of use

- Quality assurance in sensor manufacturing
- Development and testing of MEMS sensors

Features

- Rugged ceramic armature (15 mm x 15 mm) with coupling surfaces for attaching the test device
- Very high first axial resonance frequency (> 115 kHz)
- High acceleration amplitude (up to 400 m/s²)
- Low transverse motion (typically < 10 %)
- Wide frequency range: 5 kHz to 100 kHz

Description

The SE-16 vibration exciter has been specially developed for high frequency vibration excitation of small components and sensors both in the longitudinal and transverse direction. It can thus be used, for example, for developing and testing MEMS sensors and for quality assurance in sensor manufacturing.

The test device can be attached by glueing on the side or on the top of the coupling surfaces. Thanks to the special design of the rugged ceramic armature and its special bearing, the test device can be excited almost free of any transverse motion in a frequency range of between 5 kHz and 100 kHz.

The drive of the vibration exciter is electro-dynamic, with the required electric energy provided by the power amplifier. All components of the drive are explicitly designed for high performance. With acceptable temperature rise of the vibration exciter, high acceleration amplitudes can be created.

Through the required frequency and power range, the 7224 AE Techron power amplifier can deliver a voltage signal with extremely low distortion factor.

SE-16 High-Frequency Vibration Exciter

Technical data

SE-16 vibration exciter		
Force rating ¹⁾	12 N	
Frequency range ²⁾	5 kHz 100 kHz	
Resonance frequency	> 115 kHz	
Max. stroke ³⁾	0.8 µm	
Max. acceleration ¹⁾	400 m/s ²	
Max. payload	1 g	
Transverse motion (typical) ³⁾	< 10% in the range of 5 kHz 100 kHz	
Rated current	8 A RMS	
Max. voltage	10 V RMS	
Dimensions (H x W x L)	82 mm x 130 mm x 130 mm	
Weight	2.9 kg	
7224 AE Techron power amplifier		
Power output	1100 W RMS at 4 Ohm	
Output voltage 4)	49 V	
Output current ^{4) 5)}	12 A	
Frequency range	0 Hz to 300 kHz	
Input impedance	20 kOhm	
Power supply	230 V, 10 A, 50/60 Hz	
Input signal	±10 V	
Control mode	Voltage	
Current monitor	0.2 V/A	
Dimensions (H x W x L)	89 mm (2 units) x 578 mm x 483 mm	
Weight	18.6 kg	
System cable		
Length	3 m	
Connector of vibration exciter	9-pole Sub-D connector	
Connector of power amplifier	Free cable ends	

All specification are at room temperature unless otherwise specified

¹⁾ Sine peak value

²⁾ Frequency range may be extended on request

³⁾ Peak-peak

⁴⁾ When in use with SE-16

⁵⁾ Up to 8 A RMS permitted

SE-101 RES-HA Calibration Vibration Exciter for High Acceleration

Application

- Secondary calibration of amplitude linearity of vibration sensors up to high-g-levels
- Fatigue testing

Range of Use

- Certified calibration laboratories with outstanding quality demands
- Departments of measuring instrument verification in research and industry
- Quality assurance in sensor manufacturing
- Testing of fatigue behavior of devices at high acceleration levels

Features

- Very high acceleration amplitudes (up to 400 g_n)
- Low Transverse motions < 5 %
- Usable frequency range 65 Hz ... 500 Hz
- Maximum mass of DUT 300 gram
- Internal reference accelerometer (ICP[®]-type, sensitivity about 10 mV / g_n)
- Customized solutions and modifications on request

Description

The SE-101 is a high-tech product, which is the result of intensive theoretical and practical examinations. It is designed especially for checking and calibration of amplitude linearity of sensors at certain frequencies up to high acceleration levels.

Thus the significant feature of this exciter is the high acceleration limit of up to 400 g_n using a sinusoidal excitation signal.

The drive of the exciter is electro dynamic. High acceleration amplitudes with very low temperature rise of the shaker and low transverse motions can be reached due to the special resonator design. The easily adjustable spring system allows quick changes of the resonance frequency.

SE-101 RES-HA

Calibration Vibration Exciter for High Acceleration

Components

- Vibration exciter
- Internal reference accelerometer, ICP® accelerometer
- Base Plate
- Adjustable spring system

Technical Data

Vibration Exciter				
Frequency Range	65 Hz 500 Hz (bare	65 Hz 500 Hz (bare table)		
Max. Stroke	10 mm	10 mm		
Max. Acceleration	400 g _n	400 g _n		
Max. Payload	300 gram (higher payle	300 gram (higher payloads on request)		
Transverse Motion	typ. < 5 %	typ. < 5 %		
Max. Current Input	9 A RMS	9 A RMS		
Total Weight	21 kg			
Working Temperature Range	23°C (± 2 K)	73,4°F (± 2 K)		
Storage Temperature Range	-25°C +55°C	-13°F +131°F		
Data of the Internal Reference Accelerometer				
Sensitivity (± 10 %)	1 mV / m/s² (10 mV / g	γ _n)		
Frequency Range	2 Hz 50 kHz	2 Hz 50 kHz		
Excitation Voltage	18 V _{DC} 30 V _{DC}	18 V _{DC} 30 V _{DC}		
Constant Current Excitation	2 mA 20 mA	2 mA 20 mA		
Output Bias Voltage	8 V _{DC} 12 V _{DC}	8 V _{DC} 12 V _{DC}		
Discharge Time Constant	0.5 sec 2.0 sec	0.5 sec 2.0 sec		
Settling Time (within 10 % of bias)	< 5 sec	< 5 sec		
Connectors				
Sensor (Internal Reference)	BNC-connector	BNC-connector		
Shaker	Speakon [®] -SV (8-pin)	Speakon [®] -SV (8-pin)		

Recommended Power Amplifier: **PA 14-180** Recommended optional extra: Remote shut-down

SE-201 PN-LMS Shock Exciter Low-Medium-Shock

Applications

- Secondary calibration of shock transducers as well as complete measuring instruments (measuring chain) with very high precision and efficiency, according to ISO 16063-22 (calibration by the comparison method)
- Secondary calibration of shock accelerometer reference standards
- Shock testing of small assemblies / parts

Range of Use

- Certified calibration laboratories
- Calibration laboratory departments of industrial firms particular in automotive, aviation or space travel industry
- Quality assurance in sensor manufacturing
- National metrology laboratories as highest measurement authorities

- Broad amplitude range from 5 g_n ... 10,000 g_n
- Type of excitation: halfsine shock
- Pulse duration up to 5 ms
- Good repeatability of shock
- Position of DUT: horizontal
- Sensor mass (DUT) up to 80 gram
- Realization of **all automatic calibrations** according to own test regime (up to 1 shock/s)
- Upgradeable to a CS18 shock calibration system
- Low transverse motion of DUT
- Automated regulation of amplitudes up to 6000 g_n is possible

SE-201 PN-LMS

Shock Exciter Low-Medium-Shock

The SE-201 PN-LMS is a pneumatically driven shock exciter which provides a wide amplitude range. It uses the hammer-anvil principle to generate the shocks. A projectile that is accelerated by pressurized air is used as hammer. While the air pressure is kept constantly, the kinetic energy of the projectile can be controlled by a motor driven mechanical stop that allows a precise adjustment of the projectiles starting position and thus of the distance over which it is accelerated. Thus the SE-201 PN-LMS allows a good and all electric control of the shock amplitude. All mechanical parts are build from wear resistant materials allowing best stability of the shock exciter and providing a good repeatability of shocks.

The SE-201 PN-LMS can be used for calibration purposes (secondary calibration according to ISO 16063-22) as well as for shock testing of small assemblies or parts.

It is optimized for low transverse motion of the DUT. For low shocks (5 g_n to 250 g_n) an air bearing is used to guide the anvil.

Components

- Pneumatically driven pulse generator
- Reference standard BN-02
- Control box with 5V TTL and serial (RS232) I/O-interface

Performance Specification ¹⁾

Max. sensor mass (DUT):	80 gram
Min. shock amplitude:	5 <i>g</i> _n
Max. shock amplitude:	10,000 <i>g</i> _n
Pulse Duration (typically):	0.1 ms 5 ms
Required Air Pressure:	6 bar (73 PSI)
Required Air Quality:	ISO 8573-1:2010, Class 3

¹⁾ All data for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

HOP - MS Calibration Exciter Medium-g-Shock

Patented

Applications

- Secondary calibration of shock transducers as well as complete measuring instruments in form of a measuring chain, with very high precision and efficiency, according to ISO 16063-22 (calibration by the comparison method)
- Secondary calibration of shock accelerometer reference standards
- Shock Testing of small assemblies / parts

Range of Use

- Accredited calibration laboratories
- Departments of **measuring instrument verification** in research and development particular in the aviation and space travel or in the military industry
- Quality assurance in sensor manufacturing
- National metrology laboratories as highest measurement authorities

- **Traceable** to **P**hysikalisch **T**echnische **B**undesanstalt (**PTB**) Braunschweig by the accredited SPEKTRA Calibration-Laboratory D-K-15183-01-00
- Broad amplitude range from 20 g_n ... 4.000 g_n
- Type of excitation: sinusoidal shock, adjustable signal shape or burst
- Independent control of amplitude and pulse width (within certain ranges, see table)
- Excellent repeatability of shock
- Position of DUT: horizontal
- Sensor mass (DUT) up to 30 gram
- Realization of fully automatic calibrations according to own test regime (up to 1 shock/s)

HOP - MS Shock Exciter Medium-g-Shock

The SPEKTRA HOP-MS shock exciter is determined for testing and calibrating acceleration sensors as well as for environmental testing of small assemblies and parts. It is specified to provide sine multi period shock excitations. The HOP-MS works according to the Hopkinson-bar principle. It makes use of the propagation and reflection characteristics of a mechanical wave in a slender bar. The Hopkinson-bar is excited by a pie-zoelectric actuator.

Figure 1 Schematic of the HOP-MS

In Figure 1 a schematic of the HOP-MS is shown. The main parts are: the Hopkinson Bar, Piezoelectric actuator, reaction mass, DUT and the reference standard (in this example a Laser vibrometer). If ones apply a driving voltage to the actuator, the Piezo stack changes its length. Due to the reaction mass and Newton's 2nd law a reaction force will be created. The same force will act as input force on the Hopkinson Bar. Since the driving voltage can be controlled nearly arbitrary also the reaction force and thus the acceleration at the end of the bar is determined.

Components

- Shock exciter SE-220 HOP-MS
- Reference standard BN-02
- PA 14-500 power amplifier

Performance Specification¹⁾

Shock Amplitude	PWHS ²⁾	PWFS ²⁾
20 g _n 250 g _n	180 µs	360 µs
20 g _n 500 g _n	125 µs	250 µs
20 g _n 1,000 g _n	70 µs	140 µs
20 g _n 4,000 g _n	40 µs	80 µs

¹⁾ All data for environmental conditions: temperature 23°C (\pm 2°C) and relative humidity 30 % ... 75 % ²⁾ PWHS = Pulse Width Half Sine Wave; PWFS = Pulse Width Full Sine Wave

Dimensions Hopkinson Bar	Length	approx. 2.5 m
	Height	approx. 1.3 m
	Width	approx. 0.5 m

HOP - HS Calibration Exciter High-g-Shock

Applications

- Secondary calibration of shock transducers as well as complete measuring instruments in form of a measuring chain, with very high precision and efficiency, according to ISO 16063-22 (calibration by the comparison method)
- Secondary calibration of shock accelerometer reference standards
- Shock Testing of small assemblies / parts

Range of Use

- Accredited calibration laboratories
- Departments of **measuring instrument verification** in research and development particular in the aviation and space travel or in the military industry
- Quality assurance in sensor manufacturing
- National metrology laboratories as highest measurement authorities

- Type of excitation: sinusoidal shock
- Shock amplitudes up to 100.000 gn
- Excellent repeatability of shock
- Position of DUT: horizontal
- Sensor mass (DUT) up to 30 gram
- Realization of all automatic calibrations according to own test regime (up to 20 shocks/ minute)

HOP - HS Shock Exciter High-g-Shock

The SPEKTRA HOP-HS High-g shock exciter is determined for testing and calibrating acceleration sensors. It is specified to provide sinusoidal one period shock excitations. The HOP-HS works according to the Hopkinson-bar principle. It makes use of the propagation and reflection characteristics of a mechanical wave in a slender bar. The HOP-HS consists of a shock exciter barrel and a Hopkinson-bar made of Titanium. Both are mounted on an aluminum beam. Within the barrel a projectile is accelerated pneumatically, hitting the end of the bar in an adjustable distance thus exciting the strain pulse within the bar. A pneumatic control allows to retract the projectile after each shot by applying a negative pressure. While the air pressure is kept constantly, the kinetic energy of the projectile can be controlled by a motor driven mechanical stop that allows a precise adjustment of the projectiles starting position and thus of the distance over which it is accelerated. Thus the HOP-HS allows a good and all electric control of the shock amplitude. All mechanical parts are build from wear resistant materials allowing best stability of the shock exciter and providing a good repeatability of shocks.

Components

- Pneumatically driven pulse generator
- Reference standard strain gauge BN-19
- Control box with 5V TTL and serial (RS232) I/Ointerface

Performance Specification¹⁾

Shock Acceleration	10,000 g _n 100,000 g _n	
Pulse Width PWFS / PWHS ²⁾	typical 50 µs / 25 µs	
Sensor Mass (DUT)	max. 30 gram	

 $^{1)}\,$ All data for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

 $^{2)}\,$ PWHS = Pulse Width Half Sine Wave; PWFS = Pulse Width Full Sine Wave

Air Supply		4 bar
Dimensions Hopkinson Bar	Length	approx. 3.5 m
	Height	0.8 m 1.2 m
	Width	approx. 1 m

HOP - VHS Calibration Exciter Very-High-g-Shock

Applications

- Secondary calibration of shock transducers as well as complete measuring instruments in form of a measuring chain, with very high precision and efficiency, according to ISO 16063-22 (calibration by the comparison method)
- Secondary calibration of shock accelerometer reference standards
- Shock Testing of small assemblies / parts

Range of Use

- Accredited calibration laboratories
- Departments of **measuring instrument verification** in research and development particular in the aviation and space travel or in the military industry
- Quality assurance in sensor manufacturing
- National metrology laboratories as highest measurement authorities

- Type of excitation: sinusoidal shock
- Shock amplitudes up to 200.000 gn
- Excellent repeatability of shock
- Position of DUT: horizontal
- Sensor mass (DUT) up to 15 gram
- Realization of all automatic calibrations according to own test regime (up to 20 shocks/ minute)

HOP - VHS Shock Exciter Very-High-g-Shock

The SPEKTRA HOP-VHS High-g shock exciter is determined for testing and calibrating acceleration sensors. It is specified to provide sinusoidal one period shock excitations. The HOP-VHS works according to the Hopkinson-bar principle. It makes use of the propagation and reflection characteristics of a mechanical wave in a slender bar. The HOP-VHS consists of a shock exciter barrel and a Hopkinson-bar made of Titanium. Both are mounted on an aluminum beam. Within the barrel a projectile is accelerated pneumatically, hitting the end of the bar in an adjustable distance thus exciting the strain pulse within the bar. A pneumatic control allows to retract the projectile after each shot by applying a negative pressure. While the air pressure is kept constantly, the kinetic energy of the projectile can be controlled by a motor driven mechanical stop that allows a precise adjustment of the projectiles starting position and thus of the distance over which it is accelerated. Thus the HOP-VHS allows a good and all electric control of the shock amplitude. All mechanical parts are build from wear resistant materials allowing best stability of the shock exciter and providing a good repeatability of shocks.

Components

- Pneumatically driven pulse generator
- Reference standard strain gauge BN-19
- Control box with 5V TTL and serial (RS232) I/Ointerface

Performance Specification¹⁾

Shock Acceleration	10,000 <i>g</i> _n 200,000 <i>g</i> _n	
Pulse Width PWFS / PWHS ²⁾	typical 40 μs / 20 μs	
Sensor Mass (DUT)	max. 15 gram	

¹⁾ All data for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

²⁾ PWHS = Pulse Width Half Sine Wave; PWFS = Pulse Width Full Sine Wave

³⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor)

Air Supply		4 bar	
Dimensions Hopkinson Bar	Length	approx. 3.5 m	
	Height	0.8 m 1.2 m	
	Width	approx. 1 m	

Application

• 3-axial magnetic excitation of devices under test

Range of use

- Testing of components in research and development
- Possible combination with a climatic chamber

Features

- Magnetic flux generator for any spatial direction
- Accuracy of magnetic field vector with respect to sensor axis at least ± 1°
- Earth magnetic field cancellation $\leq 1 \ \mu T$
- Homogeneity of flux \leq 1 %

Description

The flux density generator type FDG-15 is a reliable tool for generating a static flux density of up to 3 mT in any direction inside the coil system. The homogeneous magnetic field has a maximum deviation of only 1 percent in the specified dimension.

The flux density generator consists of 3 orthogonal Helmholtz coils. Each Helmholtz coil is connected to a DC Power Supply which generates a constant positive current.

If it is necessary to compensate also the smallest magnetic fields like the earth magnetic field, it is possible to generate flux densities of less than 1 μ T.

Due to the design of the exciter, it can be placed within a climatic chamber and tested regarding both parameters – magnetic excitation and variable climatic conditions.

FDG-15 Flux Density Generator

Technical data

Magnetic Unit	
Frequency range	0 Hz
Maximum Flux Density	3 mT
Step width	1 μΤ
Homogeneous Field Dimension Deviation	cube edge size 20 mm ± 1 %
Direction of Flux Density	Any
Dimensions (H x W x L)	367 mm x 368 mm x 380 mm
Environmental Without Temperature control of coils Maximum Temperature of coils	-40 °C 125 °C 150 °C
Total Weight	18 kg
Laboratory Power Supplies (KA3005P)	
Power Supply	110/230 V AC (50/60 Hz)
Output voltage	0 30 V DC
Output current	0 5 A DC
Resolution	10 mV / 1 mA
Environmental	IP20, 040 °C, ≤80 rH, ≤2000 m above sea level
PC Interface	RS232/USB
Fuse	T3 A / 250 V

All specification are at room temperature unless otherwise specified

Applications

- Power amplifier for modal testing shaker
- Power amplifier for environmental testing systems

Range of Use

- Research and development departments in industry
- Environment testing laboratories
- Universities and research institutes

- Voltage or current amplifier mode
- Frequency range DC ... 150 kHz
- Current and voltage monitor output
- Gain control
- Current limit control
- Multifunction display
- Switch for phase inversion (0° or 180°)
- Control inputs for remote emergency shut down
- Control mute input
- Amplifier state outputs for integration in testing systems
- Overload protection
- Forced air cooling for continuous operation
- High reliability operation

Description

The Power Amplifier Type PA14-500 has been designed to drive any vibration or modal exciter requiring a 500 VA power amplifier.

The rated AC output is 500 VA into a 4 Ohm exciter or resistive load. Harmonic content of the output is very small as heavy negative feedback is used.

The instrument can tolerate temperature and supply line variations while maintaining excellent stability.

The PA14-500 can be used as a voltage generator with low output impedance and a flat voltage frequency response, or as a current generator with high output impedance and a flat current frequency response.

The RMS output-current limit is adjustable.

Specifications

General	
Power Output, Max.	500 VA into a 4 Ohm exciter or resistive load, at 25°C, at 1 kHz and nominal mains voltage.
Voltage Output, Max.	45 V RMS, DC 15 kHz
Current Output, Max.	5 A DC 5 A RMS, 0.1 Hz 5 Hz 9 A RMS, 10 Hz 20 Hz 11 A RMS, 20 Hz 15 kHz
Frequency Range	20 Hz 15 kHz full power DC 150 kHz small signal voltage (-20 dB)
Input Impedance	> 10 kOhm
Input Voltage, Max.	10 V RMS
Monitor Output	Voltage monitor: 0.1 V/V ± 3 %, 0.1 Hz 15 kHz Current monitor: 0.1 V/A ± 3 %, 0.1 Hz 15 kHz
Power Requirements	Single phase 100 V / 120 V / 230 V RMS, ± 10 %, 50 Hz 60 Hz. Approx. 1,000 VA at full load Power insert connector with fuse cartridge and voltage selector at rear
Dimensions	Height: 2 U equivalent of 88 mm (3.5 in.) Width: 482.6 mm (19 in.) with flanges for standard 19" rack mounting Depth: 450 mm (17.7 in.)
Weight	21 kg (46 lb.)
Voltage Mode	
Frequency Response	DC Input: DC 15 kHz \pm 0.5 dB DC 150 kHz \pm 3.0 dB small signal voltage (-20 dB) AC Input: 5 Hz 15 kHz \pm 0.5 dB 2 Hz 150 kHz \pm 3.0 dB small signal voltage (-20 dB) (2 separate BNC sockets at back panel)
Total Harmonic Distortion + Noise	< 0.1 % (40 Hz 5 kHz) < 0.2 % (5 kHz 15 kHz)
Gain	18 V/V (± 2 dB) at 1 kHz
Current Mode	
Frequency Response	DC and AC Input: 5 Hz 15 kHz ± 0.5 dB 2 Hz 60 kHz ± 3.0 dB small signal voltage (-20 dB)
Total Harmonic Distortion + Noise	< 0.2 % (40 Hz 2 kHz) < 0.8 % (2 kHz 15 kHz)
Gain	12 A/V (± 2 dB) at 1 kHz

with Air Bearing Load Mounting Table

Overview 1/2

APS 129

Applications

- Seismic simulation for components
- Calibration and test for seismic instruments
- Sensor characterization

- Departments for the supervision of measuring instruments in research, industry, automotive, aviation, space, military
- Test and calibration laboratories

APS 500

Features

- Long stroke shaker for sine wave, swept sine wave, random or impulse force waveforms
- Mounting table for high payloads
- Low noise vibration by means of air bearing guidance and support

Specifications

	APS 129	APS 129-HF Increased Force	APS 500
Force (Sine Peak)	133 N (30 lbf)	186 N (42 lbf)	95 N (21 lbf)
Stroke (Peak - Peak)	158 mm (6	6.25 inch)	152 mm (6.0 inch)
Frequency Range	DC 200 Hz		
Operation	horizontal or vertical		
Armature Weight	8.5 kg (18.7 lb)		1.5 kg (3.3 lb)
Max. Payload Horizontal	23.0 kg (50.7 lb)		3.0 kg (6.6 lb)
Vertical	11.0 kg (24.3 lb)		1.3 kg (2.9 lb)
Impedance	4.4 or 1.1 Ω	1.4 Ω	1.2 Ω
Air Pressure Required	4 bar 5 bar (60 psig 70 psig)		psig)
Air Flow Required	650 l/h (0.4 cfm)		
Total Shaker Weight	79.0 kg (174.2 lb)		64.0 kg (141.1 lb)
Overall Dimension L x W x H	889 x 219 x 216 mm (35 x 8.6 x 8.5 inch)		813 x 219 x 210 mm (32 x 8.6 x 8.3 inch)
Load Table Size L x W	254 x 254 mm (10 x 10 inch)		79.5 x 79.5 mm (3.1 x 3.1 inch)

Accessories (optional)

	APS 129	APS 129-HF	APS 500
Power Amplifier		APS 125	
System Cables for Connection Shaker to Amplifier		APS 0082-6E	
Zero Position Controller for Vibration Exciters		APS 0109	
Vertical Mounting Kit / Vertical Operation Kit	APS	S 1291	APS 5002

Additional accessories available

with Air Bearing Load Mounting Table

Overview 2/2

APS 113-AB

Applications

- Seismic simulation for components
- Calibration and test for seismic instruments
- Sensor characterization

- Departments for the supervision of measuring instruments in research, industry, automotive, aviation, space, military
- Test and calibration laboratories

APS 113 AB-LA

Features

- Long stroke shaker for sine wave, swept sine wave, random or impulse force waveforms
- Low noise vibration by means of air bearing guidance and support

Specifications

	APS 113-AB	APS 113-AB-HF Increased Force	APS 113-AB-LA Lightweight Armature
Force (Sine Peak)	133 N (30 lbf)	186 N (42 lbf)	95 N (21 lbf)
Stroke (Peak - Peak)		158 mm (6.25 inch)	
Frequency Range	DC 1	200 Hz	DC 400 Hz
Operation	horizontal or vertical		
Armature Weight	2.7 kg	(5.8 lb)	0.95 kg (2.1 lb)
Max. Overhung Load at Armature Attachment Point	1.5 kg	(3.3 lb)	1.0 kg (2.2 lb)
Impedance	4.4 or 1.1 Ω	1.4 Ω	1.2 Ω
Air Pressure Required	4 ba	r 5 bar (60 psig 70 p	sig)
Air Flow Required		500 l/h (0.3 cfm)	
Air Quality	ISO 8573.1 Class 3		
Total Shaker Weight	36.0 kg	(80 lb)	34.0 kg (75 lb)
Overall Dimension L x W x H	526 x 21	3 x 168 mm (20.7 x 8.4 x 6	6.6 inch)

Accessories (optional)

	APS 113-AB	APS 113-AB-HF	APS 113-AB-LA
Power Amplifier		APS 125	
System Cables for Connection Shaker to Amplifier		APS 0082-6E	
Zero Position Controller for Vibration Exciters		APS 0109	
Vertical Mounting Kit / Vertical Operation Kit		APS 0162	

Additional accessories available

with Linear Ball Bearings

 Modal analysis of dynamic loaded structures

APS 113 horizontal

- Seismic simulation for components
- Calibration and test for seismic instruments
- Geoservice, Geoscience, Geophysics, Geoseismic

APS 400 vertikal with APS 0412 Reaction Mass

Range of Use

- Departments for the supervision of measuring instruments in research, industry, automotive, aviation, space, military and civil engineering
- Test and calibration laboratories

APS 420 horizontal with APS 4222 Trunnion Base

Features

- Long stroke shaker for sine wave, swept sine wave, random or impulse force waveforms
- Optimized to deliver power to resonant load with minimum shaker weight and drive power
- Rugged linear guidance system

Specifications

	APS 113 / APS 113-HF	APS 400	APS 420
Force (Sine Peak)	133 N / 186 N (30/42 lbf)	445 N (100 lbf)	900 N (200 lbf)
Velocity (Sine Peak)		1,000 mm/s (39 inch/s)	
Stroke (Peak - Peak)	158 mm (6	3.25 inch)	150 mm (5.9 inch)
Frequency Range		DC 200 Hz	
Operation		horizontal or vertical	
Armature Weight	2.3 kg (5.1 lb)	2.8 kg (6.2 lb)	3.6 kg (8.0 lb)
Max. Overhung Load at Armature Attachment Point		9.0 kg (20 lb)	
DC Coil Resistance	4.4 or 1.1 Ω / 1.4 Ω	1.6 Ω	1.1 Ω
Total Shaker Weight	36.0 kg (80 lb)	73.0 kg (161 lb)	140.0 kg (310 lb)
Dimension L x W x H	526 x 213 x 168 mm (20.7 x 8.4 x 6.6 inch)	526 x 314 x 178 mm (20.7 x 12.4 x 7.0 inch)	591 x 360 x 280 mm (23.3 x 14.2 x 11.0 inch)

Overview 1/2

with Linear Ball Bearings

Accessories (optional)

	APS 113	APS 400	APS 420
Power Amplifier	APS 125	APS 1	145
System Cables for Connecting Shaker to Amplifier	APS 0082-6E	APS 008	32-6E
Auxiliary Table Kit – Horizontal	APS 0052	APS 0	452
Auxiliary Table Kit - Vertical	APS 0077	APS 0	477
Auxiliary Table Kit – Horizontal and Vertical	APS 0078	APS 0	478
Reaction Mass Assembly	APS 0112	APS 0412	APS 4212
Lifting Handles (Set of 4)	APS 0414	APS 0414	APS 4221
Carrying Handles and Tie-down Bars	APS 0108	APS 0421	
Trunnion Base		APS 4222	
Over Travel Switch		APS 8543	
Modal Stinger Kit		APS 8610	
Steel Cable Kit	APS 8611	APS 8	612

Additional accessories available

Advantages

- Realization of all automatic calibrations according to own test regime (up to 1 shock/s)
- User-friendly and efficient
- Upgradeable to a shock acceleration calibration device

Application

• Generates pressure shock impulses with low pulse duration (<2 ms)

Range of use

- Dynamic calibration of pressure sensors
- Dynamic tests of pressure sensors

- Pressure amplitudes from **22 MPa to 420 Mpa** with pulse duration less than 2 ms
- Create test descriptions in which a calibration run is performed fully automated using the SPEKTRA CS18 Software

Features	SPEKTRA Shock pressure device
amplitude	22 420 MPa
pulse duration	<2 ms (depends on projectile mass)
operation	pneumatic, fully automated
Impulse form	half sine
pressure transmission	hydraulic (Oil)
upgradeable	shock acceleration

Schematic

Pulse form

Subject to change without notice

Pressure Box PSB-01 For pressure control of SE-09

Application

- Control of inlet air pressure for air bearing vibration exciter SE-09
- Reduction of air consumption by air bearings

Range of use

- For calibration with SPEKTRA SE-09 vibration exciter and SPEKTRA CS18 calibration system
- Helpful where air consumption should be minimized, e.g. compressed air from containers

Features

- Voltage supply AC as well as DC possible
- Automatic stop of calibration procedure when air pressure lower than configured minimum pressure
- Thus protection of air bearings of vibration exciter is ensured
- Automatic stop and connection of compressed air during calibration procedure minimizes air consumption

Description

The Pressure Box PSB-01 was developed to control the air flow of air bearing SPEKTRA vibration exciters.

It is intended to stop or allow the air flow of a compressed air source and to check the pressure of this source if it is higher or lower than the configured pressure of the pressure switch. If the pressure is not in the correct range the operation of the amplifier will be stopped.

This way the risk of damages to the air bearings by incorrect operation can be eliminated.

In connection with a SPEKTRA CS18 calibration system the compressed air source will be automatically switched on. After finishing the calibration it is switched off. Thereby air consumption is minimized.

Technical Data

General Specification	
Input Voltage AC	100 V 240 V RMS, 50 Hz 60 Hz
Input Voltage DC	88 375 V
Air Quality according to ISO 8573-1	Class 3 or better
Air Pressure	1 10 bar (according to pressure threshold)
Pressure threshold SE-09	1.5 bar
Dimensions	200 mm x 300 mm x 120 mm
Connections for compressed air	Quick connector 6 mm
Environment	
Operational Temperature	10 °C 30 °C
Storage Temperature	-40 °C 60 °C
Do not operate while condensation is present!	

Functional principle

Shock Box Control unit for SPEKTRA shock exciters

Application

- control of the positioning system for the projectile and manual shock releasing on SPEKTRA shock exciters
- shock calibration with CS18-Systems
- shock calibration with SPEKTRA shock exciters and other measurement systems

Application Fields

- HOP-HS/VHS
- PN-LMS
- CS18 VHS
- CS18 HS
- CS18 LMS

- convenient control for operation of SPEKTRA shock exciters
- menu with two adjustable languages (English/ german)
- allows controlling of SPEKTRA shock exciters via Ethernet
- integration into other measurement systems is possible
- simple Reconstructing/Servicing of SPEKTRA shock exciters (e.g. exchanging the projectile)

Shock Box Control unit for SPEKTRA shock exciters

The **Shock Box** is a control unit for SPEKTRA shock exciters HOP-HS/VHS and PN-LMS. It allows a manual control of the positioning system for the projectile and of releasing shocks. It also enables the control of the shock exciters from a PC via Ethernet. In order to do this there is an instruction list for full functionality.

With these features the Shock Box creates an interface for controlling the aforementioned shock exciters. She is suitable with CS18 and other measurement systems.

ATTENTION:

The Shock Box is unsuitable for recording the measurement data of a shock.

Technical Data:

Physical Quantity	Value
Supply Voltage	6V
Current Consumption	max. 500 mA
Tolerance of Setting Firing Range	0,1 mm
Tolerance of Setting Pressure	0,01 bar
Transmission Parameters RS232	19200Bd, 8 databit, 1 stopbit, no parity
Housing Metrics LxWxH [mm]	223x104x44
Digital Outputs	3 (5V, max. 20mA)
Analogue Output	010 V, 12 Bit
Analogue Input	010 V, 12 Bit

Structure of the Shock Exciter System with Shock Box:

All data are subject to change without notice

December 2013

VCS 201 Vibration Control System

Fields of Application

The VCS 201 Vibration Control System is a digital measuring and control system to be used in vibration engineering. Thus it is employed as standard control module in vibration test systems by SPEKTRA. It is used to set up and control the test equipment and visualize the test criteria for the simulation of environments of objects under test according to DIN EN 60068-2, military or manufacturer's standards.

The VCS 201 is suitable as control module for any kind of equipment mentioned above. I.e. the VCS 201 can also be used without any trouble for updating existing systems.

A special application of the VCS 201 Vibration Control System is used as SRS-35 in the CS18 Calibration System by SPEKTRA for the calibration of accelerometers.

Applications

Typical applications of the VCS 201 Vibration Control System in combination with a vibration exciter are systems for:

- the simulation of environments in the lab,
- vibration exposure testing in the production of susceptible modules (e.g. CD drives)
- balancing systems for vibration sensors (e.g. airbag sensors)

Features

Selectable modes:

- Sine fixed frequencies (table)
- Swept sine
- Noise (optional extra)
- Shock (optional extra)

The frequency range of the control action is identical for all modes:

 5 Hz ... 5 kHz (optional extras: other ranges, up to 0.4 Hz up to 50 kHz)

Other features (subset)

- Remote control option by DCOM or DLL
- Observation channels (notch)
- Laservibrometer as velocity sensor
- Sensor curve correction

Option: Plug-in module I/O13 for generating +24 V switching signals.

This plug-in module is needed when the VCS 201 is part of an automatic test stand and control signals have to be supplied or processed.

Example of Applications

Vibration testing of sensors up to 400 g_n using the VCS 201 on a vibration exciter SE-R101

Design and Configuration

The Vibration Control System VCS 201 is a Vibration Control Unit VCU13 (front-end hardware in 19" modular design) in conjunction with the PC software VCS 201 for WINDOWS.

In its basic version, the VCS 201 includes the following plug-in units: (1 TE = 5.08 mm)

- Dual-channel measuring amplifier ANA13.5 (10 TE)
- Signal generator CPU13.5 (10 TE)
- Signal processor/controller (SHARC) DSP13 (4 TE)
- Power supply unit PS13.5 (14 TE).

Depending on the application, the plug-in units are housed either in a laboratory case or in a 19" module frame to be used as a plug-in for rack mount.

In its basic version, channel 1 of the measuring amplifier carries the reference signal used for control and channel 2 is used as a supplementary measuring channel. Each channel has three inputs which can be selected electronically and to which the following sources can be directly connected:

- Charge transducers, CHAx
- Transducers with integrated amplifiers, ICPx
- Voltage signal, DIR

There is a RS-232, USB or ethernet interface for communication with the control PC.

The VCS 201 can be upgraded by adding two more measuring channels (1 plug-in unit ANA13.5).

The VCS 201 software is optionally also available for all CS18 calibration systems.

VCS 201 Vibration Control System

97272

100:44 # 1

0.

Ger Signal

#ICI XI

CHI D

000 20

HO HO B E 940

Signal generation:	5 Hz 5 kHz (option: 0.4 Hz 50 kHz with 0.01 Hz resolution, to be set in discrete steps
Swept-sine excitation:	Linear or logarithmic frequency sweep
Noise excitation:	controlled noise up to 2,000 lines
	2 Hz … 5 (32) kHz
Shock excitation:	half sine, trapezoid, saw tooth
	0.25 ms 40 ms
Signal inputs:	- DIR input for AC signals, e.g. from a measuring amplifier
	- CHA input for directly connecting charge sensors
	- ICP [®] input for directly connecting ICP [®] sensors, incl. 4 mA supply
Gain:	to be programmed for each channel in 6 dB steps between
	- 12 dB and 78 dB for combined inputs DIR / ICP [®]
Interfaces:	RS 232 / USB / Ethernet
AD conversion:	16 Bit resolution: 128 / 64 / 32 / 16 / 8 kHz sampling frequency
AC signal output:	10 V (0 V_{RMS} 7,071 V_{RMS}) to external power amplifier
COLA output:	Constant level output
AC output:	OUT X analog input for checking the waveform for each channel
Power supply:	230 V / 50 Hz // 115 V / 60 Hz
Dimensions (W x H x D):	Width depending on configuration 19 " x 3 U x 320 mm

Vibration Control System VCS 201 with power amplifier PA14-500

Noise in a frequency range with stress profile

-

ALSO DATE

1.00

國憲法

SPEKTRA

é.

would have been a state of the state of the

154

10

480

VCS 400 Vibration Control System – powerful, modular, flexible

Applications

- Vibration tests
- Modal excitation
- Quality assurance
- Environmental tests

Fields of use

- Subsystem for automatic tests in production lines
- Mobile use in field
- Laboratory applications
- Updating of existing vibration test systems
- Customized solutions
- Tailored controller configurations for APS-shakers

- Scaleable, flexible vibration control system with variable number of measurement/control channels
- Hardware base:
 National Instruments PXI
 reasonable price, worldwide available
- Compact hardware, suitable for industrial applications
- Controller for vibration test modes: sine, random, shock
- Control of acceleration, velocity, displacement, voltage, also with laser vibrometers
- Stand-alone usage without PC possible
- Remote controllable by Ethernet interface, DLL
- Measurement database
- Rich display and export options

VCS 400 Vibration Control System – powerful, modular, flexible

Operation modes

- Sine
- Random
- Shock optional

Application

- Providing well controlled vibration with one exciter in low frequency range
- Orientation measurement for environmental tests
- Easy and medium complex test scenarios

Technical data

Sine	0.1 Hz 5 kHz (Extensions on request)
Random	1 Hz 5 kHz, 5,000 Lines

Output Channels

- 2 output channels 16 bit, 10 V
- 1 control channel for 1 shaker
- 1 Monitoring channel (COLA, Freq. Monitor...)

Input Channels

- 2 input channels 16 bit (0.2, 1, 5, 10 V) DC
- IEPE/ICP optional
- One of the two input channels is usually connected with a reference sensor at exciter thru a supply box

Configuration

- NI PXI Real time system in flexible composition
- Connection to PC via Ethernet
- Powerful PC User Interface (National Instruments LabVIEW), extensible by customer if necessary
- Digital I/O for status, start, stop
- optional signal conditioning for charge sensors, PR sensors, capacitive sensors

Remote control

• simple flexible remote control by DLL, Ethernet, VI or COM/DCOM

Options

- flexible data analysis
- · Complex test schedules by easy scripts inside user interface program

Standards

• DIN EN 60068-2 Part 6, 27, 29, 64, 80

VCS 401 Vibration Control System – powerful, modular, flexible

Applications

- Vibration tests
- Modal excitation
- Quality assurance
- Environmental tests
- Micro-structural investigation

Fields of use

- Subsystem for automatic tests in production lines
- · Mobile use in field
- Laboratory applications
- Updating of existing vibration test systems
- Customized solutions
- Tailored controller configurations for SPEKTRA HF-shaker SE-09 and APS-shakers
- Laser measurement station for micro-mechanic components

- Scaleable, flexible vibration control system with variable number of measurement/control channels
- Hardware base:
 National Instruments PXI
 reasonable price, worldwide available
- Compact hardware, suitable for industrial applications
- Controller for vibration test modes: sine, random, shock, time signal replication
- Control of acceleration, velocity, displacement, voltage, also with laser vibrometers
- Stand-alone usage without PC possible
- Remote controllable by Ethernet interface, DLL
- Measurement database
- Rich display and export options
- · Real time data acquisition, transmission, recording
- Complex test schedules by easy scripts inside user interface program

Operation modes

- Sine
- Random
- Shock
- Sine over Random

- Resonance (search & dwell)
- Time signal replication
- others on request

Technical data

Sine	0.01 Hz 50 (95) kHz (Extensions on request)
Random	1 Hz 50 (95) kHz, 5,000 (10,000) Lines
Shock	Halfsine, Trapezoid, Sawtooth, Custom; 0.25 ms 40 ms

Multi channel operation

- 1 to 8 control channels for up to 8 shakers
- Synchronous excitation, with adjustable phase shift if required
- Individual excitation of some or all channels
- 1 channel control with up to 34 inputs, average, min., max.
- Monitoring channels

Configuration

- NI PXI Real time system in flexible composition
- Connection to PC via Ethernet
- Powerful PC User Interface (National Instruments LabVIEW), extensible by customer if necessary
- 2 to 34 Analogue Inputs 24 Bit, 10 V, with or without IEPE, switchable
- 2 to 8 Analogue Outputs 24 Bit, 10 V
- optional data acquisition channels e.g. 16 * 16 Bit
- optional Digital I/O for status, start, stop
- optional signal conditioning for charge sensors, PR sensors, capacitive sensors

Remote control

• simple flexible remote control by DLL, Ethernet, VI or COM/DCOM

Data acquisition

- Real time data acquisition, transmission, recording
- flexible data analysis

Special solutions

- Low cost standard system, 1 output / 2 input channel(s), 0.1 Hz ... 5 kHz
- 4 Channel Controller for 4 long stroke shakers APS 400 with seismic masses for modal analysis
- HF-Controller with HF Shaker SE-09, 1 Hz ... 95 kHz
- Customized solutions, production test systems, digital acc. Sensor data acquisition, 3D excitation

Standards

• DIN EN 60068-2 Part 6, 27, 29, 64, 80

List of References *

Measurement and Test Systems, Vibration Control Systems, Engineering Solutions

Universities

Bauhaus-University, Weimar (Germany) People's Friendship University, Moscow (Russia) Technical University of Hamburg - Harburg (Germany) University of Hong Kong (China) University of Manchester (United Kingdom) University of Vienna (Austria)

Other Industrial Customers

Amsted Rail (Australia) Conti TEMIC microelectronic GmbH, Kirchheim / Frankfurt (Germany) Pacific Seismic (USA) Panasonic (Japan) Philips Automotive, Wetzlar (Germany) Robert Bosch, various sites (Hungary, Spain, Germany, USA/Mexico) Siemens AG, Leipzig (Germany) Wacker Chemie, Munich (Germany) Westinghouse Electric (Sweden)

Vibration Systems configured as stand-alone Test Stands for sensors and modules in development and production or for use as sub-systems in automatic test stations for continuous quality monitoring as well as for modal analysis of buildings.

* extract from the VCS customer data base

All data are subject to change without notice

January 2014

DAkkS Calibration Laboratory

Calibration Laboratory D-K-15183-01-00 entitled to issue DAkkS and ISO certificates

The DAkkS calibration laboratory with SPEKTRA is accredited for measurand acceleration and acoustical quantities in conformity with international standard DIN EN ISO/IEC 17025. With calibration systems for primary- and secondary calibration the laboratory is able to carry out calibrations with best possible measuring uncertainty.

Feature of the accredited DAkkS calibration laboratory: Vibration calibration with a measuring uncertainty from 0.15 % at primary and from 0.5 % at secondary level.

Devices to calibrate are sensors, measuring equipment and calibrators from the fields vibration and acoustics i.e.:

- Vibration sensors (also optical) and measuring microphones
- Vibration meters, laser vibrometers and sound level meters
- · Vibration and acoustic calibrators
- Signal conditioners for charge and voltage

As result of the calibration DAkkS or factory calibration certificates will be issued. Calibration certificates of accredited laboratories will be accepted internationally within the framework of ISO 9000 and the MRA (Mutual Recognition Arrangement).

View of a calibration stand in the SPEKTRA DAkkS laboratory

DAkkS Datasta Alkeettlerungstafe	
Deutsche Akkreditier	rungsstelle GmbH
Entrusted according to Section B subsection 1 AkkStelleGBV Signatory to the Multilateral Ages (A, ILAC and IAF for Mutual Recog	subsection 1 AkkStelleG in connection with Section 1 ements of pation
Accreditatio	n 🕷
The Deutsche Akkreditierungsstell	le GmbH attests that the calibration laboratory
SPEKTRA Schwingungstechnik Heidelberger Straße 12, 0118	k und Akustik GmbH Dresden 9 Dresden
is competent under the terms of 0 following fields:	DIN EN ISC/IEC 17025-2005 to carry out calibrations in t
Mechanical quantities - Acceleration - Acoustics	
The scoreduation certificate shall only with the accreditation number D 4-15 the revenue side of the cover elect and	apply in connection with the notice of acceptuation of 2013) C 45-03 and is valid until 2013-13-20. It comprises the conn the the following assess with a total of 5 pages.
Registration number of the certificate	D-8-35183-01-00
Branditionia, 2012-12-21	Signal Dr. Internations Head of Dreams

Accreditation certificate of SPEKTRA DAkks calibration lab D-K-15183-01-00

Calibration of

- Geophones from 0.2 Hz (also very low frequ. from 0.1 Hz)
- Human vibration meters
- Crash sensors with shock excitation
- Dynamic force sensors
- Impact hammers
- Sound pressure calibration of
- Microphones and
- Sound level meters

Performance spectrum sound pressure calibration – pressure chamber and free field

Dhusiaal	Object of Calibration	Measuring Conditions			
Quantity		Frequency	Sound Pressure Level	Calibration Result	
Sound Pressure Level (Pressure Chamber)	1/4", 1/2", 1"- Measuring microphones, Pistonphones, Acoustic calibrators	250 Hz 1,000 Hz 31.5 Hz 2 kHz	124 dB 94 dB / 114 dB 84 dB 114 dB	Pressure non load or factory transfer value of measuring microphones; Display differences of sound level meters; Sound pressure level, frequency and distortion factor of acoustical calibrators and pistonphones	
Sound Pressure Level (Free Field)	All types of measuring microphones, Sound level meters, Sound level measuring chains	125 Hz 20 kHz	74 dB 94 dB	Free-field non load or factory transfer value of measuring microphones; Display differences of sound level meters	

DAkkS Calibration Laboratory

DAkkS Calibration

Traceable to the Physikalisch-Technische Bundesanstalt (PTB) and to NIST via MRA

Object of Calibration	Calibration Method	Physical Quantity	Measurement Range	Calibration Result
Vibration sensors charge, ICP [®] , voltage, capacitive and piezo-resistive types for quantities acceleration, velocity or dis- placement	Secondary calibration with Sine excitation acc. to ISO 16063-21	Vibration Acceleration Velocity Displacement 	0,1 Hz 20 kHz 0,01 m/s ² 500 m/s ² horizontal or vertical	 Transfer coefficient (modulus) Angle of phase shift
Vibrationmeter for machines, or impact on human bodies, vibration calibrators, belt tension measuring device, optical vibrationmeter	Secondary calibration with Sine excitation acc. to ISO 16063-21 Human vibration calibration acc. to ISO 8041	Vibration Acceleration Velocity Displacement 	0,1 Hz 20 kHz 0,01 m/s ² 500 m/s ² horizontal or vertical	 Transfer coefficient (modulus) Angle of phase shift Deviation of displayed value
Reference sensors (primary calibration using laser vibrometers)	Primary calibration with Sine excitation acc. to ISO 16063-11	Vibration Acceleration Velocity Displacement 	0,1 Hz 20 kHz 0,01 m/s ² 10 m/s ² horizontal or vertical	 Transfer coefficient (modulus) Angle of phase shift
Geophones, seismometers with / without vibration sensor	Secondary calibration with Sine excitation acc. to ISO 16063-21	Vibration Acceleration Velocity Displacement 	0.2 Hz 80 Hz 0,01 m/s ² 30 m/s ² horizontal vertical up to 5 kg up to 3 kg	 Transfer coefficient (modulus) Angle of phase shift Deviation of displayed value
Signal conditioner , measurement amplifier for charge, ICP [®] , voltage, capacitive or piezo-resistive types of sensors	Secondary calibration with Sine excitation	ChargeVoltage	0.2 Hz 50 kHz 0.1 pC 10,000 pC 1 mV 30 V	 Transfer coefficient (modulus) Angle of phase shift Deviation of displayed value
Shock accelerometers charge, ICP [®] , voltage, capacitive or piezo-resistive types	Secondary calibration with shock excitation acc. to ISO 16063-22	Shock acceleration	0,2 km/s² 2 km/s² 1 ms 10 ms	Transfer coefficient (modulus)
High-g-shock accelerometers charge, ICP [®] , capacitive or piezo-resistive types	Primary or secondary calibration with shock excitation	Shock Acceleration Velocity 	0,2 km/s² …100 km/s² 4 ms … 30 μs	Transfer coefficient (modulus)
Impact hammer	Secondary calibration with shock excitation	Force	10 N 500 N	Transfer coefficient (modulus)
Laser vibrometer with velocity, displacement or acceleration output as well as Reference laser vibrometer	Primary calibration with Sine excitation acc. to ISO 16063-41	Vibration Acceleration Velocity Displacement 	0,1 Hz 20 kHz 0,01 m/s ² 250 m/s ²	 Transfer coefficient (modulus) Angle of phase shift Deviation of displayed value

Factory Calibrations

Object of Calibration	Calibration Method	Physical Quantity	Measurement Range	Calibration Result
Static accelerometers	Calibration in the earth gravity field	Static acceleration	Calibration at 9.81113 m/s ²	Transfer coefficient (modulus)
Inclinometer	Calibration by tilting in the earth gravity field	Static acceleration	0 ° 360 ° 0.01° angular resolution	Transfer coefficient (modulus)
Temperature Calibration	Secondary calibration at various temperatures	Acceleration	-40 ° 120 °	Transfer coefficient (modulus)

All data are subject to change without notice

SPEKTRA Schwingungstechnik und Akustik GmbH Dresden, Germany

Laboratory for Environmental Testing

SPEKTRA offers comprehensive Environmental Testing services

Vibration testing system with climate chamber

SPEKTRA - Your valued partner for quality assurance in research, development and production.

Farsighted companies include environmental evaluation in the early phases of product development as part of a total cost optimization process.

Automotive suppliers as well as manufacturers of electronic components, sensors, and test and measurement equipment utilize our expertise in a wide range of services offered.

We react flexibly to your time constraints. Different tests are performed in parallel. Additional testing requirements such as function monitoring during the test can also be realized.

Vibration testing of small modules under Thermostream®

Mechanical Tests, e.g. according to IEC 60068 or factory standards

Maximum Displacement: Vibration Testing - Sinusoidal 100 mm (peak-peak) - Resonance Search Maximum Acceleration: - Sweep 650 m/s² 100 - Random Maximum Velocity: - Sine on Random 10.0 3,0 m/s Maximum Force vector: 11000 N Maximum Displacement: Shock Testing 200.0 - half-sine shock 100 mm (peak-peak) 150.0 100.0 - saw-tooth shock Maximum Acceleration: 50.0 trapezoid shock n/sec2) 1300 m/s² Continuous Shock Tests Real. -50.0 Maximum Velocity: -100.0 4,5 m/s -150.0 Maximum Force vector: 27500 N

Sinale Shock

Climatic Tests, e.g. according to DIN EN 60068 or factory standards

- Cold
- Dry heat

• Damp heat, constant

• Damp heat, cyclic

The payload bay volume of our climatic chamber is 0.6 m³ (600 liter), the dimensions are 800 x 800 x 950 mm

Temperature range for constant and cyclic tests: -70°C ... +180°C

Change of temperature: 10 K/min

Range of relative humidity: 10 % ... 95 %

Change of temperature / storage
Laboratory for Environmental Simulation

Combined mechanical / climatic tests

Combined tests with **vibration** and **temperature** are often required by product or factory standards. Those combined tests are realized with our climatic chamber that has a connection to our shaker in its base element.

For projects where there are no specific product or factory standards, we **counsel** our customers on how to specify tests, test severity and how to carry out the examination.

Combined test Vibration / Temperature

Monitoring / Recording of digital and analog signals

With our monitoring software "Observer", both digital and analog output signals can be monitored at sampling rates up to 2 MHz.

The software was written specifically for this monitoring and can be adapted - if necessary - to meet special requirements of our customers.

With an A/D-converter, voltages up to 10 V can be digitized (higher voltages are provided with voltage divider). By means of suitable converters, additional measured quantities such as current consumption can be monitored.

For the monitoring of devices under test, up to 16 channels are available that can detect very small deviations (in the μ s - range), made possible because of the high sampling rate.

Our software displays the relevant test data and stores it as required. Special setups allow recording of specific intervals in a ring buffer.

For the monitored channels, limits can be defined that activate the ring buffer. When the measured values are below or above those limits the data from the ring buffer is automatically stored.

Computerized monitoring of output signals

Example of Use:

The sliding contacts of a device under test should be examined for contact bouncing during a shock test. For this purpose, the output signal (behind the sliding contacts) was decoupled, digitized and recorded with a sampling rate of 20 kHz in the ring buffer with a capacity of one second. This finely graduated sampling rate allowed detection of the shortest interruptions of the output voltage in the microsecond range.

In another example, the output voltages of test devices were monitored during various shock tests. Again, the output signal was decoupled with a voltage divider, digitized by an A/D converter, and recorded with a sampling rate of 50 microseconds in the ring buffer. When the conditions for the predetermined tolerance range (adjustable limit areas that can be programmed with the software) were satisfied, the recorded data of the ring buffer was automatically stored.