CS18P HF

Primary Calibration System High-Frequency

Applications

- Primary calibration of vibration sensors, calibrators and meters with lowest measurement uncertainty according to ISO 16063-11 (Primary calibration using method 3)
- Primary calibration of laser vibrometers and reference laser vibrometers according to ISO 16063-41
- Primary calibration of reference standard transducers
- Resonant frequency search up to 50 kHz

Range of Use

- National metrological laboratories as highest metrological authorities
- Certified calibration laboratories with outstanding quality demands
- Departments of measuring instrument verification in research and industry
- Quality assurance in sensor manufacturing

Features

- Traceable to Physikalisch Technische Bundes-anstalt (PTB) Braunschweig by the accredited SPEKTRA Calibration Laboratory D-K-15183-01-00 (DAkkS Calibration Certificate), NIST (MRA) ...
- Calibration of sensors with / without measuring amplifier, measuring systems with indication of their own by applying of determinate acceleration signals
- Calibration of calibrators by measurement with ultra-high precision
- Frequency range 5 Hz ... 20 kHz (... 50 kHz)
- Sensors with mass up to 200 gram
- **Digital laser vibrometer** as primary reference standard
- Application of an air-bearing high-frequency vibration exciter with internal reference standard
- Maximum acceleration 40 g_n
- Additionally applicable for secondary calibrations according to ISO 16063-21 by using integrated secondary reference standard
- Upgradeable to combined calibration system CS18P VLF / HF

CS18P HF

SPEKTRA

Primary Calibration System High-Frequency

Components

- Precision measuring and control system SRS-35, SPEKTRA
- Software CS18 HF with operation modes: sensor calibration, measurement, supply, sweep
- Power amplifier PA 14-500
- Air bearing vibration exciter SE-09 with base plate M
- All-digital Polytec laser vibrometer PLV-01 as primary reference standard
- Prism for the calibration of laser vibrometers
- Vibration isolator VI-01 for laser vibrometer PLV-02
- BN-09 as secondary reference standard, integrated in exciter SE-09
- Single-ended reference standard for the calibration of calibrators

Specifications of CS18P HF (Primary Calibration) at 23°C (± 2°C) and relative humidity 30 % ... 75 %

Frequency Range		Sensor Mass DUT	Expanded Measurement Uncertainty ²⁾		Working Range (peak value)			
from	to	horizontal / vertical up to	Amount ³⁾ / Phase ¹⁾ Sensors and Laser Vibrometers with analogue Signal Output	Display Deviation Ref. Laser Vibrometer	Mini- mum	Maximum ⁴⁾ (Displacement, Velocity, Acceleration)	Maximum ⁵⁾ (Displacement, Velocity, Acceleration)	
5 Hz	< 20 Hz	200 gram	0.5 % / 0.5°	0.2 %	0.1 m/s²			
20 Hz	1,000 Hz		0.3 % / 0.5°			5 Hz 12 Hz: 4 mm	5 Hz 12 Hz: 4 mm	
> 1,000 Hz	5,000 Hz		0.5 % / 0.5°			7	7	
> 5,000 Hz	10,000 Hz	50 gram	1.0 % / 1.0°	0.3 %		12 Hz 53 Hz: 0.3 m/s	12 Hz 106 Hz: 0.3 m/s	
> 10,000 Hz	15,000 Hz		2.0 % / 2.0°	0.4 %				
> 15,000 Hz	20,000 Hz		2.5 % / 3.0°	0.5 %		53 Hz 20 kHz:	106 Hz 20 kHz:	
Reference Frequency 80 Hz, 100 Hz, 160 Hz		200 gram	0.3 % / 0.5°	0.2 %	10 m/s²	100 m/s²	200 m/s²	

Specifications of CS18P HF (Secondary Calibration)

5 Hz	< 10 Hz	200 gram	1.0 % / 1.0°	-			
10 Hz	< 20 Hz		0.7 % / 0.7°		1.0 m/s²	5 Hz 12 Hz: 4 mm	5 Hz12 Hz: 4 mm
20 Hz	1,000 Hz		0.5 % / 0.7°				
> 1,000 Hz	5,000 Hz		0.7 % / 0.7°			40.11- 50.11-	12 Hz 106 Hz:
> 5,000 Hz	10,000 Hz	50 gram	1.5 % / 1.0°			12 Hz 53 Hz: 0.3 m/s	0.3 m/s
> 10,000 Hz	15,000 Hz		2.0 % / 2.0°				
> 15,000 Hz	20,000 Hz		3.0 % / 3.0°			53 Hz 20 kHz: 100 m/s²	106 Hz 20 kHz: 200 m/s²
Reference Frequency 80 Hz, 100 Hz, 160 Hz		200 gram	0.5 % / 0.7°		10 m/s²		

¹⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor) for the best possible DUT (other devices that are not as ideal have to be evaluated with individual additions)

Options for calibration systems

-TABLE block made of sand stone for proper installation and utilization of the system

All data are subject to change without notice

March 2016

²⁾ Only in combination with optional extra PHASE

³⁾ Valid for electrical sensor signals ≥ (1 mV or 1 pC)

⁴⁾ Maximum acceleration for maximum payload (DUT); higher excitations possible according to datasheet SE-09

⁵⁾ Maximum acceleration without any payload; higher excitations possible according to datasheet SE-09