

CS Q-LEAP™ SINE with SE-20

vibration calibration system with high frequency exciter

HERO™ vibration controller incl. signal conditioners

CS Q-LEAP[™] software

- sine calibration
- sine sweep
- vibration measurement
- vibration generation
- more on demand

Typical DUT*

- ✓ vibration sensors
 - PE transducers
 - IEPE transducers
 - VC transducers
 - PR transducers
 - Digital transducers (SPI, I2C, DTI, and other interfaces)
- ✓ vibration meters
- ✓ vibration calibrators
- ✓ supports TEDS/ID modules according to IEEE 1451.4

Standards

- ✓ ISO 16063-21: Calibration of vibration transducers by comparison to a reference transducer
- ✓ ISO 16063-44: Calibration of field vibration calibrators
- ✓ ISO 17025: General requirements for the competence of testing and calibration laboratories

SE-20 high frequency vibration exciter with internal reference accelerometer and power amplifier

Key features

Vibration calibration system for the frequency range 3 Hz...10 kHz

Traceable to PTB (German National Metrology Laboratory)

Calibration of vibration sensors, measurement systems and calibrators

Integrated sensor database

Integrated software for the generation of calibration certificates (print, PDF,...) Easy data exchange with applications like ERP systems or measuring equipment databases

Force rating, max. (sine peak) 1)	95 N (21 lbf)
Frequency range 3 Hz 10 kHz - calibration mode (traceable) 10 kHz 20 kHz - extended range for testing purposes	
Acceleration, max. ¹⁾	600 m/s² (61 g _n)
Displacement, max. (peak-peak) 2)	10 mm (0.39 in)
DUT weight, max.	2 kg (4.4 lbs) vertical 1 kg (2.2 lbs) horizontal

- 1) Interval mode of operation
- 2) Recommended operation range; mechanical stops at 12 mm (0.47 in)

Frequency range		Maximum recommended	Expanded measurement uncertainty 4)
from	to	payload for best performance ³⁾	magnitude 5) / phase 6) of transfer coefficient
3 Hz	< 5 Hz	500 g (1.1 lbs)	2.0 % / 2.0°
5 Hz	< 10 Hz		1.5 % / 1.5°
10 Hz	< 20 Hz		1.0 % / 0.7°
20 Hz	1 000 Hz		0.7 % / 0.7°
> 1 000 Hz	5 000 Hz	250 g (0.6 lbs)	1.5 % / 1.5°
> 5 000 Hz	10 000 Hz	50 g (0.1 lbs)	2.5 % / 2.0°
Reference frequence 80 Hz, 100 Hz, 160		500 g (1.1 lbs)	0.5 % / 0.7°

Recommended excitation amplitudes (peak values)		
Minimum	1.0 m/s ²	
	5 mm in the range 3 Hz20.2 Hz	
Maximum (high payload) ⁷⁾	80 m/s^2 in the range $20.2 \text{ Hz} \dots 1 \text{ kHz}$	
(displacement, velocity, acceleration)	120 m/s ² in the range 1 kHz5 kHz	
	250 m/s ² in the range 5 kHz10 kHz	
Maximum (without payload) ⁸⁾	5 mm in the range 3 Hz39 Hz	
(displacement, velocity, acceleration)	300 m/s ² in the range 39 Hz10 kHz	

- 3) Maximum recommended payload to comply the specified measurement uncertainty for the system. Higher payloads are possible (according to the data sheet of vibration exciter), in this case individual estimations of the uncertainty must be performed.
- 4) Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor) for the best possible DUT (other devices that are not as ideal have to be evaluated with individual additions)
- 5) Uncertainties only valid for electrical sensor signals ≥ (1 mV or 1 pC)
- 6) Only in combination with optional extra PHASE
- 7) Maximum acceleration for maximum recommended payload of DUT
- 8) Maximum acceleration without any payload